A Model for Flux Rope Formation and Disconnection in Pseudostreamer Coronal Mass Ejections

P. F. Wyper, B. J. Lynch, C. R. DeVore, P. Kumar, S. K. Antiochos, L. K. S. Daldorff
{"title":"A Model for Flux Rope Formation and Disconnection in Pseudostreamer Coronal Mass Ejections","authors":"P. F. Wyper, B. J. Lynch, C. R. DeVore, P. Kumar, S. K. Antiochos, L. K. S. Daldorff","doi":"arxiv-2409.08126","DOIUrl":null,"url":null,"abstract":"Coronal mass ejections (CMEs) from pseudostreamers represent a significant\nfraction of large-scale eruptions from the Sun. In some cases, these CMEs take\na narrow jet-like form reminiscent of coronal jets; in others, they have a much\nbroader fan-shaped morphology like CMEs from helmet streamers. We present\nresults from a magnetohydrodynamic simulation of a broad pseudostreamer CME.\nThe early evolution of the eruption is initiated through a combination of\nbreakout interchange reconnection at the overlying null point and ideal\ninstability of the flux rope that forms within the pseudostreamer. This stage\nis characterised by a rolling motion and deflection of the flux rope toward the\nbreakout current layer. The stretching out of the strapping field forms a flare\ncurrent sheet below the flux rope; reconnection onset there forms low-lying\nflare arcade loops and the two-ribbon flare footprint. Once the CME flux rope\nbreaches the rising breakout current layer, interchange reconnection with the\nexternal open field disconnects one leg from the Sun. This induces a whip-like\nrotation of the flux rope, generating the unstructured fan shape characteristic\nof pseudostreamer CMEs. Interchange reconnection behind the CME releases\ntorsional Alfv\\'en waves and bursty dense outflows into the solar wind. Our\nresults demonstrate that pseudostreamer CMEs follow the same overall magnetic\nevolution as coronal jets, although they present different morphologies of\ntheir ejecta. We conclude that pseudostreamer CMEs should be considered a class\nof eruptions that are distinct from helmet-streamer CMEs, in agreement with\nprevious observational studies.","PeriodicalId":501068,"journal":{"name":"arXiv - PHYS - Solar and Stellar Astrophysics","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Solar and Stellar Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Coronal mass ejections (CMEs) from pseudostreamers represent a significant fraction of large-scale eruptions from the Sun. In some cases, these CMEs take a narrow jet-like form reminiscent of coronal jets; in others, they have a much broader fan-shaped morphology like CMEs from helmet streamers. We present results from a magnetohydrodynamic simulation of a broad pseudostreamer CME. The early evolution of the eruption is initiated through a combination of breakout interchange reconnection at the overlying null point and ideal instability of the flux rope that forms within the pseudostreamer. This stage is characterised by a rolling motion and deflection of the flux rope toward the breakout current layer. The stretching out of the strapping field forms a flare current sheet below the flux rope; reconnection onset there forms low-lying flare arcade loops and the two-ribbon flare footprint. Once the CME flux rope breaches the rising breakout current layer, interchange reconnection with the external open field disconnects one leg from the Sun. This induces a whip-like rotation of the flux rope, generating the unstructured fan shape characteristic of pseudostreamer CMEs. Interchange reconnection behind the CME releases torsional Alfv\'en waves and bursty dense outflows into the solar wind. Our results demonstrate that pseudostreamer CMEs follow the same overall magnetic evolution as coronal jets, although they present different morphologies of their ejecta. We conclude that pseudostreamer CMEs should be considered a class of eruptions that are distinct from helmet-streamer CMEs, in agreement with previous observational studies.
伪流子日冕物质抛射中的通量绳索形成和断开模型
来自伪流子的日冕物质抛射(CMEs)占太阳大规模爆发的很大一部分。在某些情况下,这些日冕物质抛射呈狭窄的喷流状,让人联想到日冕喷流;而在另一些情况下,它们则呈宽得多的扇形形态,就像来自头盔流的日冕物质抛射。爆发的早期演化是通过上覆空点的爆发互换重联和在伪流子内部形成的通量绳的理想不稳定性共同启动的。这一阶段的特点是通量绳向爆发电流层的滚动运动和偏转。束带场的拉伸在通量绳下方形成了耀斑流层;在这里发生的再连接形成了低平耀斑弧形环和双带耀斑足迹。一旦 CME 通量绳到达上升的爆发电流层,与外部开放场的交换重联就会断开一条腿与太阳的连接。这导致了通量绳的鞭状力矩旋转,产生了伪流子 CME 所特有的无结构扇形。CME背后的交换再连接释放出扭转的Alfv\'en 波和迸发的高密度外流到太阳风中。我们的研究结果表明,伪流子CME与日冕喷流遵循相同的总体磁力演化过程,尽管它们的喷出物呈现出不同的形态。我们的结论是,伪流子 CMEs 应被视为一类不同于头盔流 CMEs 的爆发,这与以前的观测研究是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信