De novo design of high-affinity protein binders with AlphaProteo

Vinicius Zambaldi, David La, Alexander E. Chu, Harshnira Patani, Amy E. Danson, Tristan O. C. Kwan, Thomas Frerix, Rosalia G. Schneider, David Saxton, Ashok Thillaisundaram, Zachary Wu, Isabel Moraes, Oskar Lange, Eliseo Papa, Gabriella Stanton, Victor Martin, Sukhdeep Singh, Lai H. Wong, Russ Bates, Simon A. Kohl, Josh Abramson, Andrew W. Senior, Yilmaz Alguel, Mary Y. Wu, Irene M. Aspalter, Katie Bentley, David L. V. Bauer, Peter Cherepanov, Demis Hassabis, Pushmeet Kohli, Rob Fergus, Jue Wang
{"title":"De novo design of high-affinity protein binders with AlphaProteo","authors":"Vinicius Zambaldi, David La, Alexander E. Chu, Harshnira Patani, Amy E. Danson, Tristan O. C. Kwan, Thomas Frerix, Rosalia G. Schneider, David Saxton, Ashok Thillaisundaram, Zachary Wu, Isabel Moraes, Oskar Lange, Eliseo Papa, Gabriella Stanton, Victor Martin, Sukhdeep Singh, Lai H. Wong, Russ Bates, Simon A. Kohl, Josh Abramson, Andrew W. Senior, Yilmaz Alguel, Mary Y. Wu, Irene M. Aspalter, Katie Bentley, David L. V. Bauer, Peter Cherepanov, Demis Hassabis, Pushmeet Kohli, Rob Fergus, Jue Wang","doi":"arxiv-2409.08022","DOIUrl":null,"url":null,"abstract":"Computational design of protein-binding proteins is a fundamental capability\nwith broad utility in biomedical research and biotechnology. Recent methods\nhave made strides against some target proteins, but on-demand creation of\nhigh-affinity binders without multiple rounds of experimental testing remains\nan unsolved challenge. This technical report introduces AlphaProteo, a family\nof machine learning models for protein design, and details its performance on\nthe de novo binder design problem. With AlphaProteo, we achieve 3- to 300-fold\nbetter binding affinities and higher experimental success rates than the best\nexisting methods on seven target proteins. Our results suggest that AlphaProteo\ncan generate binders \"ready-to-use\" for many research applications using only\none round of medium-throughput screening and no further optimization.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computational design of protein-binding proteins is a fundamental capability with broad utility in biomedical research and biotechnology. Recent methods have made strides against some target proteins, but on-demand creation of high-affinity binders without multiple rounds of experimental testing remains an unsolved challenge. This technical report introduces AlphaProteo, a family of machine learning models for protein design, and details its performance on the de novo binder design problem. With AlphaProteo, we achieve 3- to 300-fold better binding affinities and higher experimental success rates than the best existing methods on seven target proteins. Our results suggest that AlphaProteo can generate binders "ready-to-use" for many research applications using only one round of medium-throughput screening and no further optimization.
利用 AlphaProteo 重新设计高亲和力蛋白质结合剂
蛋白质结合蛋白的计算设计是一种基本能力,在生物医学研究和生物技术领域具有广泛的用途。近年来,针对某些目标蛋白质的设计方法取得了长足进步,但无需多轮实验测试就能按需设计出高亲和力的结合蛋白仍是一项尚未解决的挑战。本技术报告介绍了用于蛋白质设计的机器学习模型系列 AlphaProteo,并详细介绍了它在全新结合剂设计问题上的表现。利用 AlphaProteo,我们在七个目标蛋白质上实现了比现有最佳方法高 3 到 300 倍的结合亲和力和更高的实验成功率。我们的研究结果表明,AlphaProteoco 只需一轮中等通量筛选,无需进一步优化,就能为许多研究应用生成 "即用型 "结合剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信