Polarization Detection on Social Networks: dual contrastive objectives for Self-supervision

Hang Cui, Tarek Abdelzaher
{"title":"Polarization Detection on Social Networks: dual contrastive objectives for Self-supervision","authors":"Hang Cui, Tarek Abdelzaher","doi":"arxiv-2409.07716","DOIUrl":null,"url":null,"abstract":"Echo chambers and online discourses have become prevalent social phenomena\nwhere communities engage in dramatic intra-group confirmations and inter-group\nhostility. Polarization detection is a rising research topic for detecting and\nidentifying such polarized groups. Previous works on polarization detection\nprimarily focus on hand-crafted features derived from dataset-specific\ncharacteristics and prior knowledge, which fail to generalize to other\ndatasets. This paper proposes a unified self-supervised polarization detection\nframework, outperforming previous methods in unsupervised and semi-supervised\npolarization detection tasks on various publicly available datasets. Our\nframework utilizes a dual contrastive objective (DocTra): (1)\ninteraction-level: to contrast between node interactions to extract critical\nfeatures on interaction patterns, and (2) feature-level: to contrast extracted\npolarized and invariant features to encourage feature decoupling. Our\nexperiments extensively evaluate our methods again 7 baselines on 7 public\ndatasets, demonstrating significant performance improvements.","PeriodicalId":501032,"journal":{"name":"arXiv - CS - Social and Information Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Social and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Echo chambers and online discourses have become prevalent social phenomena where communities engage in dramatic intra-group confirmations and inter-group hostility. Polarization detection is a rising research topic for detecting and identifying such polarized groups. Previous works on polarization detection primarily focus on hand-crafted features derived from dataset-specific characteristics and prior knowledge, which fail to generalize to other datasets. This paper proposes a unified self-supervised polarization detection framework, outperforming previous methods in unsupervised and semi-supervised polarization detection tasks on various publicly available datasets. Our framework utilizes a dual contrastive objective (DocTra): (1) interaction-level: to contrast between node interactions to extract critical features on interaction patterns, and (2) feature-level: to contrast extracted polarized and invariant features to encourage feature decoupling. Our experiments extensively evaluate our methods again 7 baselines on 7 public datasets, demonstrating significant performance improvements.
社交网络上的极化检测:自我监督的双重对比目标
回音室和在线论述已成为一种普遍的社会现象,在这些地方,群体间会发生剧烈的群体内确认和群体间敌意。极化检测是检测和识别此类极化群体的一个新兴研究课题。以往关于极化检测的研究主要集中在根据特定数据集的特征和先验知识手工创建的特征上,这些特征无法推广到其他数据集。本文提出了一种统一的自监督偏振检测框架,在各种公开数据集上的无监督和半监督偏振检测任务中,其性能优于之前的方法。我们的框架采用了双重对比目标(DocTra):(1) 交互层面:对节点交互进行对比,以提取交互模式的关键特征;(2) 特征层面:对提取的极化特征和不变特征进行对比,以鼓励特征解耦。我们在 7 个公共数据集上对我们的方法和 7 个基线进行了广泛评估,结果表明我们的方法在性能上有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信