Detecting Calls to Action in Multimodal Content: Analysis of the 2021 German Federal Election Campaign on Instagram

Michael Achmann-Denkler, Jakob Fehle, Mario Haim, Christian Wolff
{"title":"Detecting Calls to Action in Multimodal Content: Analysis of the 2021 German Federal Election Campaign on Instagram","authors":"Michael Achmann-Denkler, Jakob Fehle, Mario Haim, Christian Wolff","doi":"arxiv-2409.02690","DOIUrl":null,"url":null,"abstract":"This study investigates the automated classification of Calls to Action\n(CTAs) within the 2021 German Instagram election campaign to advance the\nunderstanding of mobilization in social media contexts. We analyzed over 2,208\nInstagram stories and 712 posts using fine-tuned BERT models and OpenAI's GPT-4\nmodels. The fine-tuned BERT model incorporating synthetic training data\nachieved a macro F1 score of 0.93, demonstrating a robust classification\nperformance. Our analysis revealed that 49.58% of Instagram posts and 10.64% of\nstories contained CTAs, highlighting significant differences in mobilization\nstrategies between these content types. Additionally, we found that FDP and the\nGreens had the highest prevalence of CTAs in posts, whereas CDU and CSU led in\nstory CTAs.","PeriodicalId":501032,"journal":{"name":"arXiv - CS - Social and Information Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Social and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the automated classification of Calls to Action (CTAs) within the 2021 German Instagram election campaign to advance the understanding of mobilization in social media contexts. We analyzed over 2,208 Instagram stories and 712 posts using fine-tuned BERT models and OpenAI's GPT-4 models. The fine-tuned BERT model incorporating synthetic training data achieved a macro F1 score of 0.93, demonstrating a robust classification performance. Our analysis revealed that 49.58% of Instagram posts and 10.64% of stories contained CTAs, highlighting significant differences in mobilization strategies between these content types. Additionally, we found that FDP and the Greens had the highest prevalence of CTAs in posts, whereas CDU and CSU led in story CTAs.
检测多模态内容中的行动号召:分析 Instagram 上的 2021 年德国联邦大选活动
本研究调查了 2021 年德国 Instagram 选举活动中行动号召(CTA)的自动分类,以促进对社交媒体语境下动员的理解。我们使用微调 BERT 模型和 OpenAI 的 GPT-4 模型分析了超过 2,208 个 Instagram 故事和 712 个帖子。结合合成训练数据的微调 BERT 模型获得了 0.93 的宏观 F1 分数,显示出强大的分类性能。我们的分析表明,49.58% 的 Instagram 帖子和 10.64% 的故事包含 CTA,这突显了这些内容类型在动员策略上的显著差异。此外,我们发现 FDP 和绿党在帖子中使用 CTA 的比例最高,而基民盟和基社盟在故事中使用 CTA 的比例最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信