Shazelin Alipitchay, Muhammad Aswad Alias, Sharifah Nur Shahirah Syed Abdul Hamid, Rabizah Hamzah, Norain Mansor, Nurulhusna Ab. Hamid, Hidayatulfathi Othman
{"title":"Temporal and interaction dynamics of dengue cases, entomological and meteorological variables in Melaka, Malaysia: A multivariate time series analysis","authors":"Shazelin Alipitchay, Muhammad Aswad Alias, Sharifah Nur Shahirah Syed Abdul Hamid, Rabizah Hamzah, Norain Mansor, Nurulhusna Ab. Hamid, Hidayatulfathi Othman","doi":"10.1101/2024.08.30.24312846","DOIUrl":null,"url":null,"abstract":"The interaction between dengue cases, entomological and meteorological variables has remained intricate for decades. Validated facts are important to form robust decision making with the adoption of safer and sustainable efforts. This study aims to elucidate the relationship between the variables in the long run and short-term dynamic focusing in Melaka, Malaysia, in an attempt to improve the understanding of the variables and their temporal associations. This study quantifies the variables on their temporal associations, potential time lags, and dynamic interplays between all the variable data sets. The research applies a Johansen Cointegration Test and Vector Error Correction Model to validate long term run and examine short-term deviations among dengue cases, temperature, ovitrap and sticky ovitrap data from 2020-2022. Empirical findings prove that temperature, sticky ovitrap index (SOI) and ovitrap index (OI) has a significant and unique long-run equilibrium relationship with dengue cases. The short-term equilibrium results display a robust causality between variables. The model fit elucidates 74.2% of the dynamics. The VECM model provides an excellent trade-off between goodness of fit and complexity in describing the variables examined. Previous dengue occurrences predicted a surge of new dengue cases while preserving the cyclical pattern. The model predicts the utility and efficacy of sticky ovitraps. It also validates ovitrap use as a surveillance tool and offers substantiation of the influence of temperature on the progression of dengue cases.","PeriodicalId":501071,"journal":{"name":"medRxiv - Epidemiology","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.30.24312846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction between dengue cases, entomological and meteorological variables has remained intricate for decades. Validated facts are important to form robust decision making with the adoption of safer and sustainable efforts. This study aims to elucidate the relationship between the variables in the long run and short-term dynamic focusing in Melaka, Malaysia, in an attempt to improve the understanding of the variables and their temporal associations. This study quantifies the variables on their temporal associations, potential time lags, and dynamic interplays between all the variable data sets. The research applies a Johansen Cointegration Test and Vector Error Correction Model to validate long term run and examine short-term deviations among dengue cases, temperature, ovitrap and sticky ovitrap data from 2020-2022. Empirical findings prove that temperature, sticky ovitrap index (SOI) and ovitrap index (OI) has a significant and unique long-run equilibrium relationship with dengue cases. The short-term equilibrium results display a robust causality between variables. The model fit elucidates 74.2% of the dynamics. The VECM model provides an excellent trade-off between goodness of fit and complexity in describing the variables examined. Previous dengue occurrences predicted a surge of new dengue cases while preserving the cyclical pattern. The model predicts the utility and efficacy of sticky ovitraps. It also validates ovitrap use as a surveillance tool and offers substantiation of the influence of temperature on the progression of dengue cases.