Open Source Infrastructure for Automatic Cell Segmentation

Aaron Rock Menezes, Bharath Ramsundar
{"title":"Open Source Infrastructure for Automatic Cell Segmentation","authors":"Aaron Rock Menezes, Bharath Ramsundar","doi":"arxiv-2409.08163","DOIUrl":null,"url":null,"abstract":"Automated cell segmentation is crucial for various biological and medical\napplications, facilitating tasks like cell counting, morphology analysis, and\ndrug discovery. However, manual segmentation is time-consuming and prone to\nsubjectivity, necessitating robust automated methods. This paper presents\nopen-source infrastructure, utilizing the UNet model, a deep-learning\narchitecture noted for its effectiveness in image segmentation tasks. This\nimplementation is integrated into the open-source DeepChem package, enhancing\naccessibility and usability for researchers and practitioners. The resulting\ntool offers a convenient and user-friendly interface, reducing the barrier to\nentry for cell segmentation while maintaining high accuracy. Additionally, we\nbenchmark this model against various datasets, demonstrating its robustness and\nversatility across different imaging conditions and cell types.","PeriodicalId":501266,"journal":{"name":"arXiv - QuanBio - Quantitative Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automated cell segmentation is crucial for various biological and medical applications, facilitating tasks like cell counting, morphology analysis, and drug discovery. However, manual segmentation is time-consuming and prone to subjectivity, necessitating robust automated methods. This paper presents open-source infrastructure, utilizing the UNet model, a deep-learning architecture noted for its effectiveness in image segmentation tasks. This implementation is integrated into the open-source DeepChem package, enhancing accessibility and usability for researchers and practitioners. The resulting tool offers a convenient and user-friendly interface, reducing the barrier to entry for cell segmentation while maintaining high accuracy. Additionally, we benchmark this model against various datasets, demonstrating its robustness and versatility across different imaging conditions and cell types.
用于自动细胞划分的开源基础设施
自动细胞分割对各种生物和医学应用至关重要,可促进细胞计数、形态分析和药物发现等任务。然而,人工分割既耗时又容易受到主观因素的影响,因此有必要采用稳健的自动化方法。本文介绍了利用 UNet 模型的开源基础架构,这是一种深度学习架构,在图像分割任务中效果显著。该实施方案被集成到开源 DeepChem 软件包中,提高了研究人员和从业人员的可访问性和可用性。由此产生的工具提供了方便、友好的用户界面,在保持高准确度的同时降低了细胞分割的入门门槛。此外,我们还针对各种数据集对该模型进行了网络enchmark,证明了它在不同成像条件和细胞类型下的稳健性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信