On spectral eigenmatrix problem for the planar self-affine measures with three digits

IF 1.2 3区 数学 Q1 MATHEMATICS
Jing-Cheng Liu, Ming Liu, Min-Wei Tang, Sha Wu
{"title":"On spectral eigenmatrix problem for the planar self-affine measures with three digits","authors":"Jing-Cheng Liu,&nbsp;Ming Liu,&nbsp;Min-Wei Tang,&nbsp;Sha Wu","doi":"10.1007/s43034-024-00386-1","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\mu _{M,D}\\)</span> be a self-affine measure generated by an iterated function systems <span>\\(\\{\\phi _d(x)=M^{-1}(x+d)\\ (x\\in \\mathbb {R}^2)\\}_{d\\in D}\\)</span>, where <span>\\(M\\in M_2(\\mathbb {Z})\\)</span> is an expanding integer matrix and <span>\\(D = \\{(0,0)^t,(1,0)^t,(0,1)^t\\}\\)</span>. In this paper, we study the spectral eigenmatrix problem of <span>\\(\\mu _{M,D}\\)</span>, i.e., we characterize the matrix <i>R</i> which <span>\\(R\\Lambda \\)</span> is also a spectrum of <span>\\(\\mu _{M,D}\\)</span> for some spectrum <span>\\(\\Lambda \\)</span>. Some necessary and sufficient conditions for <i>R</i> to be a spectral eigenmatrix are given, which extends some results of An et al. (Indiana Univ Math J, 7(1): 913–952, 2022). Moreover, we also find some irrational spectral eigenmatrices of <span>\\(\\mu _{M,D}\\)</span>, which is different from the known results that spectral eigenmatrices are rational.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00386-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mu _{M,D}\) be a self-affine measure generated by an iterated function systems \(\{\phi _d(x)=M^{-1}(x+d)\ (x\in \mathbb {R}^2)\}_{d\in D}\), where \(M\in M_2(\mathbb {Z})\) is an expanding integer matrix and \(D = \{(0,0)^t,(1,0)^t,(0,1)^t\}\). In this paper, we study the spectral eigenmatrix problem of \(\mu _{M,D}\), i.e., we characterize the matrix R which \(R\Lambda \) is also a spectrum of \(\mu _{M,D}\) for some spectrum \(\Lambda \). Some necessary and sufficient conditions for R to be a spectral eigenmatrix are given, which extends some results of An et al. (Indiana Univ Math J, 7(1): 913–952, 2022). Moreover, we also find some irrational spectral eigenmatrices of \(\mu _{M,D}\), which is different from the known results that spectral eigenmatrices are rational.

关于三位数平面自参量的谱特征矩阵问题
让(\mu _{M,D}\)是由迭代函数系统 \(\{\phi _d(x)=M^{-1}(x+d)\(x\in \mathbb {R}^2)\}_{d\in D}\) 生成的自参量、其中,M(in M_2(\mathbb {Z})\)是一个扩展整数矩阵,D = \{(0,0)^t,(1,0)^t,(0,1)^t}\)是一个扩展整数矩阵。本文研究的是\(\mu _{M,D}\)的谱特征矩阵问题,也就是说,我们描述了对于某个谱\(\Lambda \)来说,\(R\Lambda \)也是\(\mu _{M,D}\)的谱的矩阵R的特征。给出了 R 成为谱特征矩阵的一些必要条件和充分条件,从而扩展了 An 等人的一些结果(Indiana Univ Math J, 7(1):913-952, 2022).此外,我们还发现了一些无理的 \(\mu _{M,D}\) 谱特征矩阵,这不同于谱特征矩阵是有理的这一已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信