Counterexamples to the convergence problem for periodic dispersive equations with a polynomial symbol

Daniel Eceizabarrena, Xueying Yu
{"title":"Counterexamples to the convergence problem for periodic dispersive equations with a polynomial symbol","authors":"Daniel Eceizabarrena, Xueying Yu","doi":"arxiv-2408.13935","DOIUrl":null,"url":null,"abstract":"In the setting of Carleson's convergence problem for the fractional\nSchr\\\"odinger equation $i\\, \\partial_t u + (-\\Delta)^{a/2}u=0$ with $a > 1$ in\n$\\mathbb R^d$, which has Fourier symbol $P(\\xi) = |\\xi|^a$, it is known that\nthe Sobolev exponent $d/(2(d+1))$ is sufficient, but it is not known whether\nthis condition is necessary. In this article, we show that in the periodic\nproblem in $\\mathbb T^d$ the exponent $d/(2(d+1))$ is necessary for all\nnon-singular polynomial symbols $P$ regardless of the degree of $P$. Among the\ndifferential operators covered, we highlight the natural powers of the\nLaplacian $\\Delta^k$ for $k \\in \\mathbb N$.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the setting of Carleson's convergence problem for the fractional Schr\"odinger equation $i\, \partial_t u + (-\Delta)^{a/2}u=0$ with $a > 1$ in $\mathbb R^d$, which has Fourier symbol $P(\xi) = |\xi|^a$, it is known that the Sobolev exponent $d/(2(d+1))$ is sufficient, but it is not known whether this condition is necessary. In this article, we show that in the periodic problem in $\mathbb T^d$ the exponent $d/(2(d+1))$ is necessary for all non-singular polynomial symbols $P$ regardless of the degree of $P$. Among the differential operators covered, we highlight the natural powers of the Laplacian $\Delta^k$ for $k \in \mathbb N$.
带多项式符号的周期性分散方程收敛问题的反例
在分式薛定谔方程 $i\, \partial_t u + (-\Delta)^{a/2}u=0$ 在 $\mathbb R^d$ 中具有 $P(\xi) = |\xi|^a$ 的傅里叶符号的 $a > 1$ 的 Carleson 收敛问题中,已知索波列夫指数 $d/(2(d+1))$ 是充分的,但不知道这个条件是否是必要的。在本文中,我们证明了在$\mathbb T^d$中的周期问题中,无论$P$的度数如何,指数$d/(2(d+1))$对于所有非正弦多项式符号$P$都是必要的。在所涉及的微分算子中,我们重点讨论了在\mathbb N$ 中 $k 的拉普拉奇 $\Delta^k$ 的自然幂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信