A quintic Z2-equivariant Liénard system arising from the complex Ginzburg-Landau equation: (II)

Hebai Chen, Xingwu Chen, Man Jia, Yilei Tang
{"title":"A quintic Z2-equivariant Liénard system arising from the complex Ginzburg-Landau equation: (II)","authors":"Hebai Chen, Xingwu Chen, Man Jia, Yilei Tang","doi":"arxiv-2409.04024","DOIUrl":null,"url":null,"abstract":"We continue to study a quintic Z2-equivariant Li\\'enard system $\\dot x=y,\\dot\ny=-(a_0x+a_1x^3+a_2x^5)-(b_0+b_1x^2)y$ with $a_2b_1\\ne 0$, arising from the\ncomplex Ginzburg-Landau equation. Global dynamics of the system have been\nstudied in [{\\it SIAM J. Math. Anal.}, {\\bf 55}(2023) 5993-6038] when the sum\nof the indices of all equilibria is $-1$, i.e., $a_2<0$. The aim of this paper\nis to study the global dynamics of this quintic Li\\'enard system when the sum\nof the indices of all equilibria is $1$, i.e., $a_2>0$.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We continue to study a quintic Z2-equivariant Li\'enard system $\dot x=y,\dot y=-(a_0x+a_1x^3+a_2x^5)-(b_0+b_1x^2)y$ with $a_2b_1\ne 0$, arising from the complex Ginzburg-Landau equation. Global dynamics of the system have been studied in [{\it SIAM J. Math. Anal.}, {\bf 55}(2023) 5993-6038] when the sum of the indices of all equilibria is $-1$, i.e., $a_2<0$. The aim of this paper is to study the global dynamics of this quintic Li\'enard system when the sum of the indices of all equilibria is $1$, i.e., $a_2>0$.
由复杂金兹堡-朗道方程产生的五元 Z2 方程李纳尔系统:(II)
我们继续研究由复数金兹堡-兰道方程产生的、具有 $a_2b_1\ne 0$ 的五元 Z2 变李(enard)系统 $\dot x=y,\doty=-(a_0x+a_1x^3+a_2x^5)-(b_0+b_1x^2)y$ 。当所有均衡的指数之和为 $-1$,即 $a_20$ 时,系统的全局动力学已在 [{\it SIAM J. Math. Anal.}, {\bf 55}(2023) 5993-6038] 中得到研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信