{"title":"A quintic Z2-equivariant Liénard system arising from the complex Ginzburg-Landau equation: (II)","authors":"Hebai Chen, Xingwu Chen, Man Jia, Yilei Tang","doi":"arxiv-2409.04024","DOIUrl":null,"url":null,"abstract":"We continue to study a quintic Z2-equivariant Li\\'enard system $\\dot x=y,\\dot\ny=-(a_0x+a_1x^3+a_2x^5)-(b_0+b_1x^2)y$ with $a_2b_1\\ne 0$, arising from the\ncomplex Ginzburg-Landau equation. Global dynamics of the system have been\nstudied in [{\\it SIAM J. Math. Anal.}, {\\bf 55}(2023) 5993-6038] when the sum\nof the indices of all equilibria is $-1$, i.e., $a_2<0$. The aim of this paper\nis to study the global dynamics of this quintic Li\\'enard system when the sum\nof the indices of all equilibria is $1$, i.e., $a_2>0$.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We continue to study a quintic Z2-equivariant Li\'enard system $\dot x=y,\dot
y=-(a_0x+a_1x^3+a_2x^5)-(b_0+b_1x^2)y$ with $a_2b_1\ne 0$, arising from the
complex Ginzburg-Landau equation. Global dynamics of the system have been
studied in [{\it SIAM J. Math. Anal.}, {\bf 55}(2023) 5993-6038] when the sum
of the indices of all equilibria is $-1$, i.e., $a_2<0$. The aim of this paper
is to study the global dynamics of this quintic Li\'enard system when the sum
of the indices of all equilibria is $1$, i.e., $a_2>0$.