On L1-norms for non-harmonic trigonometric polynomials with sparse frequencies

Philippe JamingIMB, Karim KellayIMB, Chadi SabaIMB, Yunlei WangIMB
{"title":"On L1-norms for non-harmonic trigonometric polynomials with sparse frequencies","authors":"Philippe JamingIMB, Karim KellayIMB, Chadi SabaIMB, Yunlei WangIMB","doi":"arxiv-2409.07093","DOIUrl":null,"url":null,"abstract":"In this paper we show that, if an increasing sequence\n$\\Lambda=(\\lambda_k)_{k\\in\\mathbb{Z}}$ has gaps going to infinity\n$\\lambda_{k+1}-\\lambda_k\\to +\\infty$ when $k\\to\\pm\\infty$, then for every $T>0$\nand every sequence $(a_k)_{k\\in\\mathbb{Z}}$ and every $N\\geq 1$, $$\nA\\sum_{k=0}^N\\frac{|a_k|}{1+k}\\leq\\frac{1}{T}\\int_{-T/2}^{T/2}\n\\left|\\sum_{k=0}^N a_k e^{2i\\pi\\lambda_k t}\\right|\\,\\mbox{d}t$$ further, if\n$\\sum_{k\\in\\mathbb{Z}}\\dfrac{1}{1+|\\lambda_k|}<+\\infty$,$$ B\\max_{|k|\\leq\nN}|a_k|\\leq\\frac{1}{T}\\int_{-T/2}^{T/2} \\left|\\sum_{k=-N}^N a_k\ne^{2i\\pi\\lambda_k t}\\right|\\,\\mbox{d}t $$ where $A,B$ are constants that depend\non $T$ and $\\Lambda$ only. The first inequality was obtained by Nazarov for $T>1$ and the second one by\nIngham for $T\\geq 1$ under the condition that $\\lambda_{k+1}-\\lambda_k\\geq 1$.\nThe main novelty is that if those gaps go to infinity, then $T$ can be taken\narbitrarily small. The result is new even when the $\\lambda_k$'s are integers\nwhere it extends a result of McGehee, Pigno and Smith. The results are then\napplied to observability of Schr\\\"odinger equations with moving sensors.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we show that, if an increasing sequence $\Lambda=(\lambda_k)_{k\in\mathbb{Z}}$ has gaps going to infinity $\lambda_{k+1}-\lambda_k\to +\infty$ when $k\to\pm\infty$, then for every $T>0$ and every sequence $(a_k)_{k\in\mathbb{Z}}$ and every $N\geq 1$, $$ A\sum_{k=0}^N\frac{|a_k|}{1+k}\leq\frac{1}{T}\int_{-T/2}^{T/2} \left|\sum_{k=0}^N a_k e^{2i\pi\lambda_k t}\right|\,\mbox{d}t$$ further, if $\sum_{k\in\mathbb{Z}}\dfrac{1}{1+|\lambda_k|}<+\infty$,$$ B\max_{|k|\leq N}|a_k|\leq\frac{1}{T}\int_{-T/2}^{T/2} \left|\sum_{k=-N}^N a_k e^{2i\pi\lambda_k t}\right|\,\mbox{d}t $$ where $A,B$ are constants that depend on $T$ and $\Lambda$ only. The first inequality was obtained by Nazarov for $T>1$ and the second one by Ingham for $T\geq 1$ under the condition that $\lambda_{k+1}-\lambda_k\geq 1$. The main novelty is that if those gaps go to infinity, then $T$ can be taken arbitrarily small. The result is new even when the $\lambda_k$'s are integers where it extends a result of McGehee, Pigno and Smith. The results are then applied to observability of Schr\"odinger equations with moving sensors.
关于频率稀疏的非谐波三角多项式的 L1 准则
在本文中,我们证明了,如果一个递增序列$Lambda=(\lambda_k)_{k\in\mathbb{Z}}$ 当$k\to\pm\infty$ 时,具有无穷大的间隙$lambda_{k+1}-\lambda_k\to +\infty$ ,那么对于每一个$T>0$和每一个序列$(a_k)_{k\in\mathbb{Z}}$ 和每一个$N\geq 1$、$$A\sum_{k=0}^N\frac{|a_k|}{1+k}\leq\frac{1}{T}\int_{-T/2}^{T/2}\left|\sum_{k=0}^N a_k e^{2i\pi\lambda_k t}\right|\,\mbox{d}t$$ further,如果$\sum_{k\inmathbb{Z}}\dfrac{1}{1+|\lambda_k|}1$,第二个是因格汉姆在$\lambda_{k+1}-\lambda_k\geq 1$的条件下对$T\geq 1$。主要的新颖之处在于,如果这些间隙达到无穷大,那么 $T$ 可以任意取小。即使当 $\lambda_k$ 是整数时,这个结果也是新的,它扩展了麦克吉希、皮格诺和史密斯的一个结果。这些结果被应用于带有移动传感器的薛定谔方程的可观测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信