Weighted bounds for a class of singular integral operators in variable exponent Herz-Morrey spaces

Yanqi Yang, Qi Wu
{"title":"Weighted bounds for a class of singular integral operators in variable exponent Herz-Morrey spaces","authors":"Yanqi Yang, Qi Wu","doi":"arxiv-2409.07152","DOIUrl":null,"url":null,"abstract":"Let T be the singular integral operator with variable kernel defined by\n$Tf(x)= p.v. \\int_{\\mathbb{R}^{n}}K(x,x-y)f(y)\\mathrm{d}y$ and\n$D^{\\gamma}(0\\leq\\gamma\\leq1)$ be the fractional differentiation operator,\nwhere $K(x,z)=\\frac{\\Omega(x,z')}{|z|^{n}}$, $z'=\\frac{z}{|z|},~~z\\neq0$. Let\n$~T^{\\ast}~$and $~T^\\sharp~$ be the adjoint of $T$ and the pseudo-adjoint of\n$T$, respectively. In this paper, via the expansion of spherical harmonics and\nthe estimates of the convolution operators $T_{m,j}$, we shall prove some\nboundedness results for $TD^{\\gamma}-D^{\\gamma}T$ and\n$(T^{\\ast}-T^{\\sharp})D^{\\gamma}$ under natural regularity assumptions on the\nexponent function on a class of generalized Herz-Morrey spaces with weight and\nvariable exponent, which extend some known results. Moreover, various norm\ncharacterizations for the product $T_{1}T_{2}$ and the pseudo-product\n$T_{1}\\circ T_{2}$ are also established.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let T be the singular integral operator with variable kernel defined by $Tf(x)= p.v. \int_{\mathbb{R}^{n}}K(x,x-y)f(y)\mathrm{d}y$ and $D^{\gamma}(0\leq\gamma\leq1)$ be the fractional differentiation operator, where $K(x,z)=\frac{\Omega(x,z')}{|z|^{n}}$, $z'=\frac{z}{|z|},~~z\neq0$. Let $~T^{\ast}~$and $~T^\sharp~$ be the adjoint of $T$ and the pseudo-adjoint of $T$, respectively. In this paper, via the expansion of spherical harmonics and the estimates of the convolution operators $T_{m,j}$, we shall prove some boundedness results for $TD^{\gamma}-D^{\gamma}T$ and $(T^{\ast}-T^{\sharp})D^{\gamma}$ under natural regularity assumptions on the exponent function on a class of generalized Herz-Morrey spaces with weight and variable exponent, which extend some known results. Moreover, various norm characterizations for the product $T_{1}T_{2}$ and the pseudo-product $T_{1}\circ T_{2}$ are also established.
变指数赫兹-莫雷空间中一类奇异积分算子的加权边界
让 T 成为具有可变内核的奇异积分算子,其定义为$Tf(x)= p.v.\K(x,x-y)f(y)\mathrm{d}y$,$D^{\gamma}(0\leq\gamma\leq1)$ 是分数微分算子,其中$K(x,z)=\frac\{Omega(x,z')}{|z|^{n}}$, $z'=\frac{z}{|z|},~~z\neq0$.设$~T^{ast}~$和$~T^\sharp~$分别为$T$的邻接和$T$的伪邻接。在本文中,通过球面谐波的展开和卷积算子 $T_{m,j}$ 的估计,我们将证明 $TD^{\gamma}-D^{gamma}T$ 和$(T^{ast}-T^{sharp})D^{\gamma}$ 在一类具有权重和可变指数的广义赫兹-莫雷空间的指数函数的自然正则性假设下的一些有界性结果,这些结果扩展了一些已知结果。此外,还建立了乘积 $T_{1}T_{2}$ 和伪乘积 $T_{1}\circ T_{2}$ 的各种规范特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信