Admissibility Conditions for Multi-window Gabor Frames on Discrete Periodic Sets

Najib Khachiaa, Mohamed Rossafi
{"title":"Admissibility Conditions for Multi-window Gabor Frames on Discrete Periodic Sets","authors":"Najib Khachiaa, Mohamed Rossafi","doi":"arxiv-2409.03423","DOIUrl":null,"url":null,"abstract":"In this paper, $\\mathcal{G}(g,L,M,N)$ denotes a $L-$window Gabor system on a\nperiodic set $\\mathbb{S}$, where $L,M,M\\in \\mathbb{N}$ and $g=\\{g_l\\}_{l\\in\n\\mathbb{N}_L}\\subset \\ell^2(\\mathbb{S})$. We characterize which $g$ generates a\ncomplete multi-window Gabor system and a multi-window Gabor frame\n$\\mathcal{G}(g,L,M,N)$ on $\\mathbb{S}$ using the Zak transform. Admissibility\nconditions for a periodic set to admit a complete multi--window Gabor system,\nmulti-window Gabor (Parseval) frame, and multi--window Gabor (orthonormal)\nbasis $\\mathcal{G}(g,L,M,N)$ are given with respect to the parameters $L$, $M$\nand $N$.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, $\mathcal{G}(g,L,M,N)$ denotes a $L-$window Gabor system on a periodic set $\mathbb{S}$, where $L,M,M\in \mathbb{N}$ and $g=\{g_l\}_{l\in \mathbb{N}_L}\subset \ell^2(\mathbb{S})$. We characterize which $g$ generates a complete multi-window Gabor system and a multi-window Gabor frame $\mathcal{G}(g,L,M,N)$ on $\mathbb{S}$ using the Zak transform. Admissibility conditions for a periodic set to admit a complete multi--window Gabor system, multi-window Gabor (Parseval) frame, and multi--window Gabor (orthonormal) basis $\mathcal{G}(g,L,M,N)$ are given with respect to the parameters $L$, $M$ and $N$.
离散周期集上多窗口 Gabor 帧的可接受性条件
在本文中,$\mathcal{G}(g,L,M,N)$ 表示在非周期性集合 $\mathbb{S}$ 上的 $L$ 窗口 Gabor 系统,其中 $L,M,M\in \mathbb{N}$ 和 $g=\{g_l\}_{l\in\mathbb{N}_L}\subset \ell^2(\mathbb{S})$.我们利用扎克变换描述了哪些 $g$ 在 $\mathbb{S}$ 上生成了完整的多窗口 Gabor 系统和多窗口 Gabor 框架$mathcal{G}(g,L,M,N)$。给出了一个周期集在参数 $L$、$M$ 和 $N$ 方面接纳一个完整的多窗口 Gabor 系统、多窗口 Gabor (Parseval) 框架和多窗口 Gabor (orthonormal) 基 $\mathcal{G}(g,L,M,N)$ 的可接纳性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信