Periodic solutions to nonlocal pseudo-differential equations. A bifurcation theoretical perspective

Juan Carlos Sampedro
{"title":"Periodic solutions to nonlocal pseudo-differential equations. A bifurcation theoretical perspective","authors":"Juan Carlos Sampedro","doi":"arxiv-2409.04253","DOIUrl":null,"url":null,"abstract":"In this paper we use abstract bifurcation theory for Fredholm operators of\nindex zero to deal with periodic even solutions of the one-dimensional equation\n$\\mathcal{L}u=\\lambda u+|u|^{p}$, where $\\mathcal{L}$ is a nonlocal\npseudodifferential operator defined as a Fourier multiplier and $\\lambda$ is\nthe bifurcation parameter. Our general setting includes the fractional\nLaplacian $\\mathcal{L}\\equiv(-\\Delta)^{s}$ and sharpens the results obtained\nfor this operator to date. As a direct application, we establish the existence\nof traveling waves for general nonlocal dispersive equations for some velocity\nranges.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we use abstract bifurcation theory for Fredholm operators of index zero to deal with periodic even solutions of the one-dimensional equation $\mathcal{L}u=\lambda u+|u|^{p}$, where $\mathcal{L}$ is a nonlocal pseudodifferential operator defined as a Fourier multiplier and $\lambda$ is the bifurcation parameter. Our general setting includes the fractional Laplacian $\mathcal{L}\equiv(-\Delta)^{s}$ and sharpens the results obtained for this operator to date. As a direct application, we establish the existence of traveling waves for general nonlocal dispersive equations for some velocity ranges.
非局部伪微分方程的周期解。分岔理论视角
在本文中,我们使用指数为零的弗雷德霍尔姆算子的抽象分岔理论来处理一元方程$\mathcal{L}u=\lambda u+|u|^{p}$ 的周期性偶数解,其中$\mathcal{L}$ 是定义为傅里叶乘数的非局部伪微分算子,$\lambda$ 是分岔参数。我们的一般设置包括分数拉普拉斯$\mathcal{L}\equiv(-\Delta)^{s}$,并深化了迄今为止针对该算子获得的结果。作为直接应用,我们为某些速度范围的一般非局部色散方程建立了行波的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信