Localization operators on discrete Orlicz modulation spaces

Aparajita Dasgupta, Anirudha Poria
{"title":"Localization operators on discrete Orlicz modulation spaces","authors":"Aparajita Dasgupta, Anirudha Poria","doi":"arxiv-2409.05373","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce Orlicz spaces on $ \\mathbb Z^n \\times \\mathbb T^n\n$ and Orlicz modulation spaces on $\\mathbb Z^n$, and present some basic\nproperties such as inclusion relations, convolution relations, and duality of\nthese spaces. We show that the Orlicz modulation space $M^{\\Phi}(\\mathbb Z^n)$\nis close to the modulation space $M^{2}(\\mathbb Z^n)$ for some particular Young\nfunction $\\Phi$. Then, we study a class of pseudo-differential operators known\nas time-frequency localization operators on $\\mathbb Z^n$, which depend on a\nsymbol $\\varsigma$ and two windows functions $g_1$ and $g_2$. Using appropriate\nclasses for symbols, we study the boundedness of the localization operators on\nOrlicz modulation spaces on $\\mathbb Z^n$. Also, we show that these operators\nare compact and in the Schatten--von Neumann classes.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce Orlicz spaces on $ \mathbb Z^n \times \mathbb T^n $ and Orlicz modulation spaces on $\mathbb Z^n$, and present some basic properties such as inclusion relations, convolution relations, and duality of these spaces. We show that the Orlicz modulation space $M^{\Phi}(\mathbb Z^n)$ is close to the modulation space $M^{2}(\mathbb Z^n)$ for some particular Young function $\Phi$. Then, we study a class of pseudo-differential operators known as time-frequency localization operators on $\mathbb Z^n$, which depend on a symbol $\varsigma$ and two windows functions $g_1$ and $g_2$. Using appropriate classes for symbols, we study the boundedness of the localization operators on Orlicz modulation spaces on $\mathbb Z^n$. Also, we show that these operators are compact and in the Schatten--von Neumann classes.
离散奥利兹调制空间上的定位算子
本文介绍了 $\mathbb Z^n \times \mathbb T^n$ 上的奥立兹空间和 $\mathbb Z^n$ 上的奥立兹调制空间,并提出了这些空间的一些基本性质,如包含关系、卷积关系和对偶性。我们证明,对于某些特定的杨函数 $\Phi$,奥利兹调制空间 $M^{Phi}(\mathbb Z^n)$ 接近于调制空间 $M^{2}(\mathbb Z^n)$ 。然后,我们研究了一类在 $\mathbb Z^n$ 上被称为时频定位算子的伪微分算子,它们依赖于符号 $\varsigma$ 和两个窗口函数 $g_1$ 和 $g_2$。使用适当的符号类,我们研究了$\mathbb Z^n$上奥利兹调制空间的局部化算子的有界性。同时,我们还证明了这些算子是紧凑的,并且在 Schatten--von Neumann 类中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信