Causality-Inspired Models for Financial Time Series Forecasting

Daniel Cunha Oliveira, Yutong Lu, Xi Lin, Mihai Cucuringu, Andre Fujita
{"title":"Causality-Inspired Models for Financial Time Series Forecasting","authors":"Daniel Cunha Oliveira, Yutong Lu, Xi Lin, Mihai Cucuringu, Andre Fujita","doi":"arxiv-2408.09960","DOIUrl":null,"url":null,"abstract":"We introduce a novel framework to financial time series forecasting that\nleverages causality-inspired models to balance the trade-off between invariance\nto distributional changes and minimization of prediction errors. To the best of\nour knowledge, this is the first study to conduct a comprehensive comparative\nanalysis among state-of-the-art causal discovery algorithms, benchmarked\nagainst non-causal feature selection techniques, in the application of\nforecasting asset returns. Empirical evaluations demonstrate the efficacy of\nour approach in yielding stable and accurate predictions, outperforming\nbaseline models, particularly in tumultuous market conditions.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a novel framework to financial time series forecasting that leverages causality-inspired models to balance the trade-off between invariance to distributional changes and minimization of prediction errors. To the best of our knowledge, this is the first study to conduct a comprehensive comparative analysis among state-of-the-art causal discovery algorithms, benchmarked against non-causal feature selection techniques, in the application of forecasting asset returns. Empirical evaluations demonstrate the efficacy of our approach in yielding stable and accurate predictions, outperforming baseline models, particularly in tumultuous market conditions.
金融时间序列预测的因果关系启发模型
我们为金融时间序列预测引入了一个新框架,该框架利用因果启发模型来平衡对分布变化的不变性和预测误差最小化之间的权衡。据我们所知,这是第一项在资产回报率预测应用中,以非因果特征选择技术为基准,对最先进的因果发现算法进行全面比较分析的研究。实证评估证明了我们的方法在产生稳定而准确的预测方面的功效,其性能优于基准模型,尤其是在动荡的市场条件下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信