{"title":"Optimizing passengers’ experience: A goal-oriented reinforcement learning speed control approach for urban railway trains","authors":"Wangyang Liu, Qingsheng Feng, Hong Li","doi":"10.1177/09544097241278012","DOIUrl":null,"url":null,"abstract":"Prolonged vibration can be uncomfortable for passengers utilizing urban rail transit systems. This study proposes an automatic speed control framework for urban railway trains to reduce vertical vibrations experienced by passengers. We suggest the concept of the “segmented comfort speed limit” to represent the vertical passing comfort of oncoming sections. This speed limit is calculated from 1/3 octave band acceleration and smoothed through lag-type speed control mode. The deep deterministic policy gradient algorithm with hindsight experience replay mechanism (HER-DDPG) is designed, to balance safety, comfort, and energy efficiency driving. Verify the speed control framework based on HER-DDPG through the rail data collected from Dalian Metro Line 12. Compared with the DDPG-based model, the vertical comfort is improved by 2.34%, and the longitudinal acceleration and total energy consumption are reduced by 45% and 8.1%. Compared with the real-world train control trajectory, HER-DDPG improves vertical comfort by 9.76% and reduces energy consumption by 12.4%. The results show that the proposed framework can effectively improve the ride experience of passengers.","PeriodicalId":54567,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","volume":"14 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part F-Journal of Rail and Rapid Transit","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544097241278012","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Prolonged vibration can be uncomfortable for passengers utilizing urban rail transit systems. This study proposes an automatic speed control framework for urban railway trains to reduce vertical vibrations experienced by passengers. We suggest the concept of the “segmented comfort speed limit” to represent the vertical passing comfort of oncoming sections. This speed limit is calculated from 1/3 octave band acceleration and smoothed through lag-type speed control mode. The deep deterministic policy gradient algorithm with hindsight experience replay mechanism (HER-DDPG) is designed, to balance safety, comfort, and energy efficiency driving. Verify the speed control framework based on HER-DDPG through the rail data collected from Dalian Metro Line 12. Compared with the DDPG-based model, the vertical comfort is improved by 2.34%, and the longitudinal acceleration and total energy consumption are reduced by 45% and 8.1%. Compared with the real-world train control trajectory, HER-DDPG improves vertical comfort by 9.76% and reduces energy consumption by 12.4%. The results show that the proposed framework can effectively improve the ride experience of passengers.
期刊介绍:
The Journal of Rail and Rapid Transit is devoted to engineering in its widest interpretation applicable to rail and rapid transit. The Journal aims to promote sharing of technical knowledge, ideas and experience between engineers and researchers working in the railway field.