Michael J. Jurynec, Elena Nosyreva, David Thompson, Crystal Munoz, Kendra A. Novak, Derek J. Matheson, Nikolas H. Kazmers, Ruhma Syeda
{"title":"PIEZO1 variants that reduce open channel probability are associated with familial osteoarthritis","authors":"Michael J. Jurynec, Elena Nosyreva, David Thompson, Crystal Munoz, Kendra A. Novak, Derek J. Matheson, Nikolas H. Kazmers, Ruhma Syeda","doi":"10.1101/2024.09.03.24312969","DOIUrl":null,"url":null,"abstract":"The synovial joints senses and responds to a multitude of physical forces to maintain joint homeostasis. Disruption of joint homeostasis results in development of osteoarthritis (OA), a disease characterized by loss of joint space, degeneration of articular cartilage, remodeling of bone and other joint tissues, low-grade inflammation, and pain. How changes in mechanosensing in the joint contribute to OA susceptibility remains elusive. PIEZO1 is a major mechanosensitive cation channel in the joint directly regulated by mechanical stimulus. To test whether altered PIEZO1 channel activity causes increased OA susceptibility, we determined whether variants affecting <em>PIEZO1</em> are associated with dominant inheritance of age-associated familial OA. We identified four rare coding variants affecting <em>PIEZO1</em> that are associated with familial hand OA. Single channel analyses demonstrated that all four PIEZO1 mutant channels act in a dominant-negative manner to reduce the open probability of the channel in response to pressure. Furthermore, we show that a GWAS mutation in <em>PIEZO1</em> associated with reduced joint replacement results in increased channel activity when compared with WT and the mutants. Our data support the hypothesis that reduced PIEZO1 activity confers susceptibility to age-associated OA whereas increased PIEZO1 activity may be associated with reduced OA susceptibility.","PeriodicalId":501263,"journal":{"name":"medRxiv - Orthopedics","volume":"453 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Orthopedics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.03.24312969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The synovial joints senses and responds to a multitude of physical forces to maintain joint homeostasis. Disruption of joint homeostasis results in development of osteoarthritis (OA), a disease characterized by loss of joint space, degeneration of articular cartilage, remodeling of bone and other joint tissues, low-grade inflammation, and pain. How changes in mechanosensing in the joint contribute to OA susceptibility remains elusive. PIEZO1 is a major mechanosensitive cation channel in the joint directly regulated by mechanical stimulus. To test whether altered PIEZO1 channel activity causes increased OA susceptibility, we determined whether variants affecting PIEZO1 are associated with dominant inheritance of age-associated familial OA. We identified four rare coding variants affecting PIEZO1 that are associated with familial hand OA. Single channel analyses demonstrated that all four PIEZO1 mutant channels act in a dominant-negative manner to reduce the open probability of the channel in response to pressure. Furthermore, we show that a GWAS mutation in PIEZO1 associated with reduced joint replacement results in increased channel activity when compared with WT and the mutants. Our data support the hypothesis that reduced PIEZO1 activity confers susceptibility to age-associated OA whereas increased PIEZO1 activity may be associated with reduced OA susceptibility.