{"title":"On Properties of Adjoint Systems for Evolutionary PDEs","authors":"Brian K. Tran, Ben S. Southworth, Melvin Leok","doi":"10.1007/s00332-024-10071-1","DOIUrl":null,"url":null,"abstract":"<p>We investigate the geometric structure of adjoint systems associated with evolutionary partial differential equations at the fully continuous, semi-discrete, and fully discrete levels and the relations between these levels. We show that the adjoint system associated with an evolutionary partial differential equation has an infinite-dimensional Hamiltonian structure, which is useful for connecting the fully continuous, semi-discrete, and fully discrete levels. We subsequently address the question of discretize-then-optimize versus optimize-then-discrete for both semi-discretization and time integration, by characterizing the commutativity of discretize-then-optimize methods versus optimize-then-discretize methods uniquely in terms of an adjoint-variational quadratic conservation law. For Galerkin semi-discretizations and one-step time integration methods in particular, we explicitly construct these commuting methods by using structure-preserving discretization techniques.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10071-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the geometric structure of adjoint systems associated with evolutionary partial differential equations at the fully continuous, semi-discrete, and fully discrete levels and the relations between these levels. We show that the adjoint system associated with an evolutionary partial differential equation has an infinite-dimensional Hamiltonian structure, which is useful for connecting the fully continuous, semi-discrete, and fully discrete levels. We subsequently address the question of discretize-then-optimize versus optimize-then-discrete for both semi-discretization and time integration, by characterizing the commutativity of discretize-then-optimize methods versus optimize-then-discretize methods uniquely in terms of an adjoint-variational quadratic conservation law. For Galerkin semi-discretizations and one-step time integration methods in particular, we explicitly construct these commuting methods by using structure-preserving discretization techniques.