Shard Theory for g-Fans

IF 0.9 2区 数学 Q2 MATHEMATICS
Yuya Mizuno
{"title":"Shard Theory for g-Fans","authors":"Yuya Mizuno","doi":"10.1093/imrn/rnae196","DOIUrl":null,"url":null,"abstract":"For a finite dimensional algebra $A$, the notion of $g$-fan $\\Sigma (A)$ is defined from two-term silting complexes of $\\textsf{K}^{\\textrm{b}}(\\textsf{proj} A)$ in the real Grothendieck group $K_{0}(\\textsf{proj} A)_{\\mathbb{R}}$. In this paper, we discuss the theory of shards to $\\Sigma (A)$, which was originally defined for a hyperplane arrangement. We establish a correspondence between the set of join-irreducible elements of torsion classes of $\\textsf{mod}A$ and the set of shards of $\\Sigma (A)$ for $g$-finite algebra $A$. Moreover, we show that the semistable region of a brick of $\\textsf{mod}A$ is exactly given by a shard. We also give a poset isomorphism of shard intersections and wide subcategories of $\\textsf{mod}A$.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"7 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae196","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a finite dimensional algebra $A$, the notion of $g$-fan $\Sigma (A)$ is defined from two-term silting complexes of $\textsf{K}^{\textrm{b}}(\textsf{proj} A)$ in the real Grothendieck group $K_{0}(\textsf{proj} A)_{\mathbb{R}}$. In this paper, we discuss the theory of shards to $\Sigma (A)$, which was originally defined for a hyperplane arrangement. We establish a correspondence between the set of join-irreducible elements of torsion classes of $\textsf{mod}A$ and the set of shards of $\Sigma (A)$ for $g$-finite algebra $A$. Moreover, we show that the semistable region of a brick of $\textsf{mod}A$ is exactly given by a shard. We also give a poset isomorphism of shard intersections and wide subcategories of $\textsf{mod}A$.
面向 g 粉丝的碎片理论
对于有限维代数 $A$,$g$-范 $\Sigma (A)$ 的概念是由实格罗内狄克群 $K_{0}(\textsf{proj}A)_{\mathbb{R}}$中 $\textsf{K}^{textrm{b}}(\textsf{proj}A)$的两期淤积复数定义的。本文讨论了$\Sigma (A)$的碎片理论,它最初是为超平面排列定义的。我们建立了$\textsf{mod}A$的扭转类的接合不可还原元素集与$g$无限代数$A$的$\Sigma (A)$碎片集之间的对应关系。此外,我们还证明了 $\textsf{mod}A$ 的砖块的半可变区域正是由碎片给出的。我们还给出了碎片交集与 $\textsf{mod}A$ 的广子类的正集同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信