Study on the mechanism of burr formation in ultrasonic vibration-assisted honing 9Cr18MoV valve sleeve

IF 4.2 2区 工程技术 Q2 ENGINEERING, MANUFACTURING
Peng Wang, Chang-Yong Yang, Ying-Ying Yuan, Yu-Can Fu, Wen-Feng Ding, Jiu-Hua Xu, Yong Chen
{"title":"Study on the mechanism of burr formation in ultrasonic vibration-assisted honing 9Cr18MoV valve sleeve","authors":"Peng Wang, Chang-Yong Yang, Ying-Ying Yuan, Yu-Can Fu, Wen-Feng Ding, Jiu-Hua Xu, Yong Chen","doi":"10.1007/s40436-024-00516-x","DOIUrl":null,"url":null,"abstract":"<p>The precision, lifespan, and stability of the electro-hydraulic servo valve sleeve are significantly impacted by the edge burrs that are easily created when honing the valve sleeve. The existing deburring process mainly rely on manual operation with high cost and low efficiency. This paper focuses on reducing the burr size during the machining process. In this paper, a single-scratch test with a finite element simulation model is conducted to study the mechanism of burr generation. The tests were carried out under ultrasonic vibration and non-ultrasonic vibration conditions to explore the effect of ultrasonic vibration on burrs. Besides, a honing experiment is conducted to verify the conclusions. The results at various cutting parameters are analyzed, and the mechanism of burr generation is revealed. The stiffness lacking of the workpiece edge material is the main reason for the burr generation. The cutting depth shows a significant effect on burr size while the cutting speed does not. The inhibition mechanism of ultrasonic vibration on burrs is also revealed. The separation of the burr stress field under ultrasonic vibration and the higher bending hinge point is the reason for burr fracturing. The re-cutting effect of ultrasonic vibration reduces the burr growth rate. The results of the honing experiment verified these conclusions and obtained a combination of honing parameters to minimize the burr growth rate.</p>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40436-024-00516-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The precision, lifespan, and stability of the electro-hydraulic servo valve sleeve are significantly impacted by the edge burrs that are easily created when honing the valve sleeve. The existing deburring process mainly rely on manual operation with high cost and low efficiency. This paper focuses on reducing the burr size during the machining process. In this paper, a single-scratch test with a finite element simulation model is conducted to study the mechanism of burr generation. The tests were carried out under ultrasonic vibration and non-ultrasonic vibration conditions to explore the effect of ultrasonic vibration on burrs. Besides, a honing experiment is conducted to verify the conclusions. The results at various cutting parameters are analyzed, and the mechanism of burr generation is revealed. The stiffness lacking of the workpiece edge material is the main reason for the burr generation. The cutting depth shows a significant effect on burr size while the cutting speed does not. The inhibition mechanism of ultrasonic vibration on burrs is also revealed. The separation of the burr stress field under ultrasonic vibration and the higher bending hinge point is the reason for burr fracturing. The re-cutting effect of ultrasonic vibration reduces the burr growth rate. The results of the honing experiment verified these conclusions and obtained a combination of honing parameters to minimize the burr growth rate.

Abstract Image

超声波振动辅助珩磨 9Cr18MoV 阀套毛刺形成机理研究
珩磨阀套时容易产生边缘毛刺,严重影响电液伺服阀套的精度、寿命和稳定性。现有的去毛刺工艺主要依靠人工操作,成本高、效率低。本文主要研究如何在加工过程中减小毛刺尺寸。本文利用有限元仿真模型进行了单划痕试验,以研究毛刺产生的机理。试验在超声波振动和非超声波振动条件下进行,以探讨超声波振动对毛刺的影响。此外,还进行了珩磨实验来验证结论。分析了不同切削参数下的结果,揭示了毛刺产生的机理。工件边缘材料刚度不足是毛刺产生的主要原因。切削深度对毛刺大小有显著影响,而切削速度则没有。同时还揭示了超声振动对毛刺的抑制机制。超声振动下毛刺应力场的分离和较高的弯曲铰点是毛刺断裂的原因。超声振动的重切效应降低了毛刺的增长速度。珩磨实验结果验证了上述结论,并得出了将毛刺生长率降至最低的珩磨参数组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Manufacturing
Advances in Manufacturing Materials Science-Polymers and Plastics
CiteScore
9.10
自引率
3.80%
发文量
274
期刊介绍: As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field. All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信