A unified combinatorial view beyond some spectral properties

IF 0.6 3区 数学 Q3 MATHEMATICS
Xiaofeng Gu, Muhuo Liu
{"title":"A unified combinatorial view beyond some spectral properties","authors":"Xiaofeng Gu, Muhuo Liu","doi":"10.1007/s10801-024-01353-8","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\beta &gt;0\\)</span>. Motivated by the notion of jumbled graphs introduced by Thomason, the expander mixing lemma and Haemers’s vertex separation inequality, we say that a graph <i>G</i> with <i>n</i> vertices is a weakly <span>\\((n,\\beta )\\)</span>-graph if <span>\\(\\frac{|X| |Y|}{(n-|X|)(n-|Y|)} \\le \\beta ^2\\)</span> holds for every pair of disjoint proper subsets <i>X</i>, <i>Y</i> of <i>V</i>(<i>G</i>) with no edge between <i>X</i> and <i>Y</i>. It is an <span>\\((n,\\beta )\\)</span>-graph if in addition <i>X</i> and <i>Y</i> are not necessarily disjoint. Using graph eigenvalues, we show that every graph can be an <span>\\((n,\\beta )\\)</span>-graph and/or a weakly <span>\\((n,\\beta )\\)</span>-graph for some specific value <span>\\(\\beta \\)</span>. For instances, the expander mixing lemma implies that a <i>d</i>-regular graph on <i>n</i> vertices with the second largest absolute eigenvalue at most <span>\\(\\lambda \\)</span> is an <span>\\((n,\\lambda /d)\\)</span>-graph, and Haemers’s vertex separation inequality implies that every graph is a weakly <span>\\((n,\\beta )\\)</span>-graph with <span>\\(\\beta \\ge \\frac{\\mu _n - \\mu _2}{\\mu _n + \\mu _2}\\)</span>, where <span>\\(\\mu _i\\)</span> denotes the <i>i</i>-th smallest Laplacian eigenvalue. This motivates us to study <span>\\((n,\\beta )\\)</span>-graph and weakly <span>\\((n,\\beta )\\)</span>-graph in general. Our main results include the following. (i) For any weakly <span>\\((n,\\beta )\\)</span>-graph <i>G</i>, the matching number <span>\\(\\alpha '(G)\\ge \\min \\left\\{ \\frac{1-\\beta }{1+\\beta },\\, \\frac{1}{2}\\right\\} \\cdot (n-1)\\)</span>. If in addition <i>G</i> is a (<i>U</i>, <i>W</i>)-bipartite graph with <span>\\(|W|\\ge t|U|\\)</span> where <span>\\(t\\ge 1\\)</span>, then <span>\\(\\alpha '(G)\\ge \\min \\{t(1-2\\beta ^2),1\\}\\cdot |U|\\)</span>. (ii) For any <span>\\((n,\\beta )\\)</span>-graph <i>G</i>, <span>\\(\\alpha '(G)\\ge \\min \\left\\{ \\frac{2-\\beta }{2(1+\\beta )},\\, \\frac{1}{2}\\right\\} \\cdot (n-1).\\)</span> If in addition <i>G</i> is a (<i>U</i>, <i>W</i>)-bipartite graph with <span>\\(|W|\\ge |U|\\)</span> and no isolated vertices, then <span>\\(\\alpha '(G)\\ge \\min \\{1/\\beta ^{2},1\\}\\cdot |U|\\)</span>. (iii) If <i>G</i> is a weakly <span>\\((n,\\beta )\\)</span>-graph for <span>\\(0&lt;\\beta \\le 1/3\\)</span> or an <span>\\((n,\\beta )\\)</span>-graph for <span>\\(0&lt;\\beta \\le 1/2\\)</span>, then <i>G</i> has a fractional perfect matching. In addition, <i>G</i> has a perfect matching when <i>n</i> is even and <i>G</i> is factor-critical when <i>n</i> is odd. (iv) For any connected <span>\\((n,\\beta )\\)</span>-graph <i>G</i>, the toughness <span>\\(t(G)\\ge \\frac{1-\\beta }{\\beta }\\)</span>. For any connected weakly <span>\\((n,\\beta )\\)</span>-graph <i>G</i>, <span>\\(t(G)&gt; \\frac{5(1-\\beta )}{11\\beta }\\)</span> and if <i>n</i> is large enough, then <span>\\(t(G)&gt;\\left( \\frac{1}{2}-\\varepsilon \\right) \\frac{1-\\beta }{\\beta }\\)</span> for any <span>\\(\\varepsilon &gt;0\\)</span>. The results imply many old and new results in spectral graph theory, including several new lower bounds on matching number, fractional matching number and toughness from eigenvalues. In particular, we obtain a new lower bound on toughness via normalized Laplacian eigenvalues that extends a theorem originally conjectured by Brouwer from regular graphs to general graphs.</p>","PeriodicalId":14926,"journal":{"name":"Journal of Algebraic Combinatorics","volume":"21 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01353-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\beta >0\). Motivated by the notion of jumbled graphs introduced by Thomason, the expander mixing lemma and Haemers’s vertex separation inequality, we say that a graph G with n vertices is a weakly \((n,\beta )\)-graph if \(\frac{|X| |Y|}{(n-|X|)(n-|Y|)} \le \beta ^2\) holds for every pair of disjoint proper subsets XY of V(G) with no edge between X and Y. It is an \((n,\beta )\)-graph if in addition X and Y are not necessarily disjoint. Using graph eigenvalues, we show that every graph can be an \((n,\beta )\)-graph and/or a weakly \((n,\beta )\)-graph for some specific value \(\beta \). For instances, the expander mixing lemma implies that a d-regular graph on n vertices with the second largest absolute eigenvalue at most \(\lambda \) is an \((n,\lambda /d)\)-graph, and Haemers’s vertex separation inequality implies that every graph is a weakly \((n,\beta )\)-graph with \(\beta \ge \frac{\mu _n - \mu _2}{\mu _n + \mu _2}\), where \(\mu _i\) denotes the i-th smallest Laplacian eigenvalue. This motivates us to study \((n,\beta )\)-graph and weakly \((n,\beta )\)-graph in general. Our main results include the following. (i) For any weakly \((n,\beta )\)-graph G, the matching number \(\alpha '(G)\ge \min \left\{ \frac{1-\beta }{1+\beta },\, \frac{1}{2}\right\} \cdot (n-1)\). If in addition G is a (UW)-bipartite graph with \(|W|\ge t|U|\) where \(t\ge 1\), then \(\alpha '(G)\ge \min \{t(1-2\beta ^2),1\}\cdot |U|\). (ii) For any \((n,\beta )\)-graph G, \(\alpha '(G)\ge \min \left\{ \frac{2-\beta }{2(1+\beta )},\, \frac{1}{2}\right\} \cdot (n-1).\) If in addition G is a (UW)-bipartite graph with \(|W|\ge |U|\) and no isolated vertices, then \(\alpha '(G)\ge \min \{1/\beta ^{2},1\}\cdot |U|\). (iii) If G is a weakly \((n,\beta )\)-graph for \(0<\beta \le 1/3\) or an \((n,\beta )\)-graph for \(0<\beta \le 1/2\), then G has a fractional perfect matching. In addition, G has a perfect matching when n is even and G is factor-critical when n is odd. (iv) For any connected \((n,\beta )\)-graph G, the toughness \(t(G)\ge \frac{1-\beta }{\beta }\). For any connected weakly \((n,\beta )\)-graph G, \(t(G)> \frac{5(1-\beta )}{11\beta }\) and if n is large enough, then \(t(G)>\left( \frac{1}{2}-\varepsilon \right) \frac{1-\beta }{\beta }\) for any \(\varepsilon >0\). The results imply many old and new results in spectral graph theory, including several new lower bounds on matching number, fractional matching number and toughness from eigenvalues. In particular, we obtain a new lower bound on toughness via normalized Laplacian eigenvalues that extends a theorem originally conjectured by Brouwer from regular graphs to general graphs.

超越某些光谱特性的统一组合观点
让 \beta >0\).受托马森(Thomason)引入的杂乱图概念、扩展混合lemma和海默斯(Haemers)顶点分离不等式的启发,我们说,如果 \(\frac{|X||Y|}{(n-|X、\如果对于 V(G) 的每一对互不相交的适当子集 X、Y,且 X 和 Y 之间没有边,那么 \(\frac{|X||Y|}{(n-|X|)(n-|Y|)} \le \beta ^2\) 成立。如果 X 和 Y 不一定相交,那么它就是一个 \((n,\beta )\) -图。利用图的特征值,我们证明了每个图都可以是一个((n,\beta))图和/或一个弱((n,\beta))图,对于某些特定的值(\(\beta))。举例来说,扩展混合lemma意味着n个顶点上的d规则图,其第二大绝对特征值最多为(),是一个((n,\lambda /d))图、哈默斯顶点分离不等式意味着每个图都是一个弱的((n,\beta))图,其中 \(\beta \ge \frac{\mu _n - \mu _2}{\mu _n + \mu _2}\) 表示第 i 个最小的拉普拉奇特征值。这促使我们研究一般的((n,\beta))图和弱((n,\beta))图。我们的主要结果包括以下几点。(i) 对于任何弱((n,\beta))-图 G,匹配数 \(\alpha '(G)\ge \min \left\{ \frac{1-\beta }{1+\beta },\,\frac{1}{2}\right\}。\cdot (n-1)\).如果 G 是一个(U, W)二边图,其中有 \(|W|ge t|U|\) where \(t\ge 1\), 那么 \(\alpha '(G)\ge \min \{t(1-2\beta ^2),1}\cdot |U|/)。(ii) 对于任何图 G,(alpha '(G)\ge \min \left\{ \frac{2-\beta }{2(1+\beta )},\, \frac{1}{2}\right\}.\cdot (n-1).\)如果 G 是一个(U, W)双瓣图,具有 \(|W|ge|U|\)并且没有孤立顶点,那么 \(\alpha '(G)\ge \min \{1/\beta ^{2},1}\cdot |U||)。(iii) 如果 G 是一个弱的((n,\beta))图,对于\(0<\beta\le 1/3\) 或者对于\(0<\beta\le 1/2\) 是一个((n,\beta))图,那么 G 有一个分数完美匹配。此外,当 n 为偶数时,G 有一个完美匹配,当 n 为奇数时,G 是因子临界的。 (iv) 对于任何连通的((n,\beta))-图 G,韧性(t(G)\ge \frac{1-\beta }{\beta }\ )。对于任何连通的弱图((n,\beta))-图G,韧度(t(G)> \frac{5(1-\beta )}{11\beta }\) 并且如果n足够大,那么(t(G)>;\leave( \frac{1}{2}-\varepsilon \right) \frac{1-\beta }{\beta }\) for any \(\varepsilon >0\).这些结果意味着谱图理论中的许多新旧结果,包括匹配数、分数匹配数和来自特征值的韧性的几个新下界。特别是,我们通过归一化拉普拉奇特征值得到了韧性的新下界,它将布鲁瓦(Brouwer)最初从规则图猜想的定理扩展到了一般图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
94
审稿时长
6-12 weeks
期刊介绍: The Journal of Algebraic Combinatorics provides a single forum for papers on algebraic combinatorics which, at present, are distributed throughout a number of journals. Within the last decade or so, algebraic combinatorics has evolved into a mature, established and identifiable area of mathematics. Research contributions in the field are increasingly seen to have substantial links with other areas of mathematics. The journal publishes papers in which combinatorics and algebra interact in a significant and interesting fashion. This interaction might occur through the study of combinatorial structures using algebraic methods, or the application of combinatorial methods to algebraic problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信