{"title":"In-situ/Operando Mössbauer Spectroscopic Investigations of Fe-involved Metal Hydroxide-Based OER Electrocatalysts","authors":"Peijia Liu, Sumbal Farid, Min Liu, Junhu Wang","doi":"10.1007/s10563-024-09432-3","DOIUrl":null,"url":null,"abstract":"<div><p>Creating cost-effective and efficient electrocatalysts for the sluggish oxygen evolution reaction (OER) is crucial for practical implementation of hydrogen production via water electrolysis, advancing metal-air batteries, and converting CO<sub>2</sub> into value-added chemicals. Transition metal hydroxides, particularly those containing iron (Fe), show promise as OER catalysts, yet the relationship between material properties and catalysis remains unclear. Recent advances in in-situ/<i>operando</i> approaches, notably <sup>57</sup>Fe Mössbauer spectroscopy, enable real-time monitoring of catalysts and reveal structural characteristics of Fe species. This review highlights case studies involving in-situ/<i>operando </i><sup>57</sup>Fe Mössbauer techniques in Fe-involved metal hydroxide OER electrocatalysis, providing insights into Fe’s role, active sites, and catalytic mechanisms. The investigation aims to assess opportunities and challenges linked to the use of in-situ/<i>operando</i> Mössbauer spectroscopy, shedding light on potential advancements in this critical research area.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"28 4","pages":"361 - 374"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-024-09432-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Creating cost-effective and efficient electrocatalysts for the sluggish oxygen evolution reaction (OER) is crucial for practical implementation of hydrogen production via water electrolysis, advancing metal-air batteries, and converting CO2 into value-added chemicals. Transition metal hydroxides, particularly those containing iron (Fe), show promise as OER catalysts, yet the relationship between material properties and catalysis remains unclear. Recent advances in in-situ/operando approaches, notably 57Fe Mössbauer spectroscopy, enable real-time monitoring of catalysts and reveal structural characteristics of Fe species. This review highlights case studies involving in-situ/operando 57Fe Mössbauer techniques in Fe-involved metal hydroxide OER electrocatalysis, providing insights into Fe’s role, active sites, and catalytic mechanisms. The investigation aims to assess opportunities and challenges linked to the use of in-situ/operando Mössbauer spectroscopy, shedding light on potential advancements in this critical research area.
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.