ExpoSort: Beating the quasi-polynomial-time barrier for reluctant sorting

Mikkel Abrahamsen
{"title":"ExpoSort: Beating the quasi-polynomial-time barrier for reluctant sorting","authors":"Mikkel Abrahamsen","doi":"arxiv-2409.00794","DOIUrl":null,"url":null,"abstract":"We introduce the algorithm ExpoSort, a groundbreaking method that sorts an\narray of $n$ numbers in a spectacularly inefficient $\\Theta(2^n)$ time.\nExpoSort proudly claims the title of the first reluctant algorithm to\ndecisively surpass the quasi-polynomial running time $\\Omega(n^{\\log\nn/(2+\\varepsilon)})$ of the notoriously sluggish SlowSort algorithm by Broder\nand Stolfi [ACM SIGACT News, 1984]. In the ongoing quest for the slowest\npossible sort, ExpoSort redefines what it means to take one's time. Remarkably, ExpoSort achieves this feat with one of the simplest pseudocodes\namong all known sorting algorithms. However, a slight modification -- merely\nmoving one recursive call inside an if statement -- transforms ExpoSort into an\nastonishingly well-camouflaged variant of the classic InsertionSort with best-\nand worst-case running times of $\\Theta(n)$ and $\\Theta(n^3)$, respectively.\nThis dual nature of ExpoSort serves as a reminder of the utmost care required\nwhen crafting pessimal algorithms, where a slight lapse in judgment could\nresult in accidentally producing an embarrassingly practical algorithm.","PeriodicalId":501525,"journal":{"name":"arXiv - CS - Data Structures and Algorithms","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Data Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the algorithm ExpoSort, a groundbreaking method that sorts an array of $n$ numbers in a spectacularly inefficient $\Theta(2^n)$ time. ExpoSort proudly claims the title of the first reluctant algorithm to decisively surpass the quasi-polynomial running time $\Omega(n^{\log n/(2+\varepsilon)})$ of the notoriously sluggish SlowSort algorithm by Broder and Stolfi [ACM SIGACT News, 1984]. In the ongoing quest for the slowest possible sort, ExpoSort redefines what it means to take one's time. Remarkably, ExpoSort achieves this feat with one of the simplest pseudocodes among all known sorting algorithms. However, a slight modification -- merely moving one recursive call inside an if statement -- transforms ExpoSort into an astonishingly well-camouflaged variant of the classic InsertionSort with best- and worst-case running times of $\Theta(n)$ and $\Theta(n^3)$, respectively. This dual nature of ExpoSort serves as a reminder of the utmost care required when crafting pessimal algorithms, where a slight lapse in judgment could result in accidentally producing an embarrassingly practical algorithm.
ExpoSort:打破勉强排序的准多项式时间障碍
我们介绍 ExpoSort 算法,这是一种开创性的方法,它能在非常低的效率 $\Theta(2^n)$ 时间内对 $n$ 的数组进行排序。ExpoSort 很自豪地宣称,它是第一个决定性地超过 Broderand Stolfi 的 SlowSort 算法[ACM SIGACT News, 1984]的准极大值运行时间 $\Omega(n^{\logn/(2+\varepsilon)})$ 的勉强算法。在不断追求最慢排序的过程中,ExpoSort 重新定义了 "慢慢来 "的含义。值得注意的是,ExpoSort 用所有已知排序算法中最简单的伪代码之一实现了这一壮举。然而,稍加修改--仅仅是将一个递归调用移到 if 语句中--ExpoSort 就变成了经典 InsertionSort 的变种,其最佳和最差运行时间分别为 $\Theta(n)$ 和 $\Theta(n^3)$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信