Feature-Based Dataset Fingerprinting for Clustered Federated Learning on Medical Image Data

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Daniel Scheliga, Patrick Mäder, Marco Seeland
{"title":"Feature-Based Dataset Fingerprinting for Clustered Federated Learning on Medical Image Data","authors":"Daniel Scheliga, Patrick Mäder, Marco Seeland","doi":"10.1080/08839514.2024.2394756","DOIUrl":null,"url":null,"abstract":"Federated Learning (FL) allows multiple clients to train a common model without sharing their private training data. In practice, federated optimization struggles with sub-optimal model utility bec...","PeriodicalId":8260,"journal":{"name":"Applied Artificial Intelligence","volume":"315 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/08839514.2024.2394756","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Federated Learning (FL) allows multiple clients to train a common model without sharing their private training data. In practice, federated optimization struggles with sub-optimal model utility bec...
基于特征的数据集指纹识别,用于医学图像数据的聚类联合学习
联合学习(FL)允许多个客户在不共享私人训练数据的情况下训练一个共同的模型。在实践中,联合优化难以实现次优模型效用,因为...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Artificial Intelligence
Applied Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
5.20
自引率
3.60%
发文量
106
审稿时长
6 months
期刊介绍: Applied Artificial Intelligence addresses concerns in applied research and applications of artificial intelligence (AI). The journal also acts as a medium for exchanging ideas and thoughts about impacts of AI research. Articles highlight advances in uses of AI systems for solving tasks in management, industry, engineering, administration, and education; evaluations of existing AI systems and tools, emphasizing comparative studies and user experiences; and the economic, social, and cultural impacts of AI. Papers on key applications, highlighting methods, time schedules, person-months needed, and other relevant material are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信