V. G. Trifonov, S. A. Sokolov, A. N. Ovsyuchenko, S. Yu. Sokolov, Ts. Batsaikhan, S. Demberel, Yu. V. Butanaev, N. G. Koshevoy
{"title":"Active Faults of Northern Central Mongolia, Their Correlation with Neotectonics and Deep Structure of the Region","authors":"V. G. Trifonov, S. A. Sokolov, A. N. Ovsyuchenko, S. Yu. Sokolov, Ts. Batsaikhan, S. Demberel, Yu. V. Butanaev, N. G. Koshevoy","doi":"10.1134/s0016852124700109","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The active tectonics of northern Central Mongolia is studied between two largest W–E-trending left lateral fault zones: the Khangai Fault and the Tunka–Mondy. These strike-slip zones are part of a single ensemble of active faults in the Mongol–Baikal region, formed under conditions of maximum northeastern compression and maximum northwestern extension. Their ENE-trending Erzin–Agardag and Tsetserleg faults with a dominant sinistral component extend between these zones. A series of the N-trending graben basins (Busiyngol, Darkhat, and Khubsugul) are located between the eastern end of the Erzin–Agardag strike-slip fault and the western part of the Tunka–Mondy strike-slip zone. The basins form a sinistral deformation zone, which is kinematically similar with the strike-slip faults, which follow the latter. In contrast to the largest boundary strike-slip faults, this structural paragenesis formed under conditions of N–S-trending relative compression and N–S-trending extension. A change in the orientation of the axes of the principal normal stress may be caused by the rotation of the block between the boundary faults. The area of graben-shaped basins is located above the top of a vast volume of low-velocity mantle, which we have identified as the Khangai plume. The lithospheric mantle above this rise is reduced; the remaining part of the lithosphere is heated and softened. The large active strike-slip faults are located above areas of subsidence of the low-velocity top of the mantle. Our trenching of the active faults showed that strong earthquakes repeated in the area of graben-shaped basins more often than in the large strike-slip zones, but they were characterized by lower magnitudes.</p>","PeriodicalId":55097,"journal":{"name":"Geotectonics","volume":"30 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geotectonics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0016852124700109","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The active tectonics of northern Central Mongolia is studied between two largest W–E-trending left lateral fault zones: the Khangai Fault and the Tunka–Mondy. These strike-slip zones are part of a single ensemble of active faults in the Mongol–Baikal region, formed under conditions of maximum northeastern compression and maximum northwestern extension. Their ENE-trending Erzin–Agardag and Tsetserleg faults with a dominant sinistral component extend between these zones. A series of the N-trending graben basins (Busiyngol, Darkhat, and Khubsugul) are located between the eastern end of the Erzin–Agardag strike-slip fault and the western part of the Tunka–Mondy strike-slip zone. The basins form a sinistral deformation zone, which is kinematically similar with the strike-slip faults, which follow the latter. In contrast to the largest boundary strike-slip faults, this structural paragenesis formed under conditions of N–S-trending relative compression and N–S-trending extension. A change in the orientation of the axes of the principal normal stress may be caused by the rotation of the block between the boundary faults. The area of graben-shaped basins is located above the top of a vast volume of low-velocity mantle, which we have identified as the Khangai plume. The lithospheric mantle above this rise is reduced; the remaining part of the lithosphere is heated and softened. The large active strike-slip faults are located above areas of subsidence of the low-velocity top of the mantle. Our trenching of the active faults showed that strong earthquakes repeated in the area of graben-shaped basins more often than in the large strike-slip zones, but they were characterized by lower magnitudes.
期刊介绍:
Geotectonics publishes articles on general and regional tectonics, structural geology, geodynamics, and experimental tectonics and considers the relation of tectonics to the deep structure of the earth, magmatism, metamorphism, and mineral resources.