{"title":"Properties of Besov and $Q_p$ spaces in terms of the Schwarzian derivative of harmonic mappings","authors":"Hugo Arbeláez, Rodrigo Hernández, Willy Sierra","doi":"arxiv-2408.09062","DOIUrl":null,"url":null,"abstract":"In this paper we give a characterization of $\\log J_f$ belongs to\n$\\widetilde{\\mathcal{B}}_p$ or $\\widetilde{\\mathcal{Q}}_p$ spaces for any\nlocally univalent sense-preserving harmonic mappings $f$ defined in the unit\ndisk, using the Schwarzian derivative of $f$ and Carleson meseaure. In\naddition, we introduce the classes $\\mathcal{BT}_p$ and $\\mathcal{QT}_p$, based\non the Jacobian operator, and begin a study of these.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we give a characterization of $\log J_f$ belongs to
$\widetilde{\mathcal{B}}_p$ or $\widetilde{\mathcal{Q}}_p$ spaces for any
locally univalent sense-preserving harmonic mappings $f$ defined in the unit
disk, using the Schwarzian derivative of $f$ and Carleson meseaure. In
addition, we introduce the classes $\mathcal{BT}_p$ and $\mathcal{QT}_p$, based
on the Jacobian operator, and begin a study of these.