Chebyshev polynomials related to Jacobi weights

Jacob S. Christiansen, Olof Rubin
{"title":"Chebyshev polynomials related to Jacobi weights","authors":"Jacob S. Christiansen, Olof Rubin","doi":"arxiv-2409.02623","DOIUrl":null,"url":null,"abstract":"We investigate Chebyshev polynomials corresponding to Jacobi weights and\ndetermine monotonicity properties of their related Widom factors. This\ncomplements work by Bernstein from 1930-31 where the asymptotical behavior of\nthe related Chebyshev norms was established. As a part of the proof, we analyze\na Bernstein-type inequality for Jacobi polynomials due to Chow et al. Our\nfindings shed new light on the asymptotical uniform bounds of Jacobi\npolynomials. We also show a relation between weighted Chebyshev polynomials on\nthe unit circle and Jacobi weighted Chebyshev polynomials on [-1,1]. This\ngeneralizes work by Lachance et al. In order to complete the picture we provide\nnumerical experiments on the remaining cases that our proof does not cover.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate Chebyshev polynomials corresponding to Jacobi weights and determine monotonicity properties of their related Widom factors. This complements work by Bernstein from 1930-31 where the asymptotical behavior of the related Chebyshev norms was established. As a part of the proof, we analyze a Bernstein-type inequality for Jacobi polynomials due to Chow et al. Our findings shed new light on the asymptotical uniform bounds of Jacobi polynomials. We also show a relation between weighted Chebyshev polynomials on the unit circle and Jacobi weighted Chebyshev polynomials on [-1,1]. This generalizes work by Lachance et al. In order to complete the picture we provide numerical experiments on the remaining cases that our proof does not cover.
与雅可比权相关的切比雪夫多项式
我们研究了与雅可比权对应的切比雪夫多项式,并确定了其相关维多姆因子的单调性。这是对伯恩斯坦 1930-31 年工作的补充,在伯恩斯坦的工作中建立了相关切比雪夫规范的渐近行为。作为证明的一部分,我们分析了由 Chow 等人提出的雅可比多项式的伯恩斯坦型不等式。我们的发现为雅可比多项式的渐近均匀边界提供了新的启示。我们还展示了单位圆上的加权切比雪夫多项式与 [-1,1] 上的雅可比加权切比雪夫多项式之间的关系。为了使问题更加完整,我们对我们的证明没有涵盖的其余情况进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信