Fusion 3-Categories for Duality Defects

Lakshya Bhardwaj, Thibault Décoppet, Sakura Schafer-Nameki, Matthew Yu
{"title":"Fusion 3-Categories for Duality Defects","authors":"Lakshya Bhardwaj, Thibault Décoppet, Sakura Schafer-Nameki, Matthew Yu","doi":"arxiv-2408.13302","DOIUrl":null,"url":null,"abstract":"We study the fusion 3-categorical symmetries for quantum theories in (3+1)d\nwith self-duality defects. Such defects have been realized physically by\nhalf-space gauging in theories with 1-form symmetries $A[1]$ for an abelian\ngroup $A$, and have found applications in the continuum and the lattice. These\nfusion 3-categories will be called (generalized) Tambara-Yamagami fusion\n3-categories $(\\mathbf{3TY})$. We consider the Brauer-Picard and Picard\n4-groupoids to construct these categories using a 3-categorical version of the\nextension theory introduced by Etingof, Nikshych and Ostrik. These two\n4-groupoids correspond to the construction of duality defects either directly\nin 4d, or from the 5d Symmetry Topological Field Theory (SymTFT). The Witt\ngroup of non-degenerate braided fusion 1-categories naturally appears in the\naforementioned 4-groupoids and represents enrichments of standard duality\ndefects by (2+1)d TFTs. Our main objective is to study graded extensions of the\nfusion 3-category $\\mathbf{3Vect}(A[1])$. Firstly, we use invertible bimodule\n3-categories and the Brauer-Picard 4-groupoid. Secondly, we use that the\nBrauer-Picard 4-groupoid of $\\mathbf{3Vect}(A[1])$ can be identified with the\nPicard 4-groupoid of its Drinfeld center. Moreover, the Drinfeld center of\n$\\mathbf{3Vect}(A[1])$, which represents topological defects of the SymTFT, is\ncompletely described by a sylleptic strongly fusion 2-category formed by\ntopological surface defects of the SymTFT. These are classified by a finite\nabelian group equipped with an alternating 2-form. We relate the Picard\n4-groupoid of the corresponding braided fusion 3-categories with a generalized\nWitt group constructed from certain graded braided fusion 1-categories using a\ntwisted Deligne tensor product. We perform explicit computations for\n$\\mathbb{Z}/2$ and $\\mathbb{Z}/4$ graded $\\mathbf{3TY}$ categories.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the fusion 3-categorical symmetries for quantum theories in (3+1)d with self-duality defects. Such defects have been realized physically by half-space gauging in theories with 1-form symmetries $A[1]$ for an abelian group $A$, and have found applications in the continuum and the lattice. These fusion 3-categories will be called (generalized) Tambara-Yamagami fusion 3-categories $(\mathbf{3TY})$. We consider the Brauer-Picard and Picard 4-groupoids to construct these categories using a 3-categorical version of the extension theory introduced by Etingof, Nikshych and Ostrik. These two 4-groupoids correspond to the construction of duality defects either directly in 4d, or from the 5d Symmetry Topological Field Theory (SymTFT). The Witt group of non-degenerate braided fusion 1-categories naturally appears in the aforementioned 4-groupoids and represents enrichments of standard duality defects by (2+1)d TFTs. Our main objective is to study graded extensions of the fusion 3-category $\mathbf{3Vect}(A[1])$. Firstly, we use invertible bimodule 3-categories and the Brauer-Picard 4-groupoid. Secondly, we use that the Brauer-Picard 4-groupoid of $\mathbf{3Vect}(A[1])$ can be identified with the Picard 4-groupoid of its Drinfeld center. Moreover, the Drinfeld center of $\mathbf{3Vect}(A[1])$, which represents topological defects of the SymTFT, is completely described by a sylleptic strongly fusion 2-category formed by topological surface defects of the SymTFT. These are classified by a finite abelian group equipped with an alternating 2-form. We relate the Picard 4-groupoid of the corresponding braided fusion 3-categories with a generalized Witt group constructed from certain graded braided fusion 1-categories using a twisted Deligne tensor product. We perform explicit computations for $\mathbb{Z}/2$ and $\mathbb{Z}/4$ graded $\mathbf{3TY}$ categories.
融合 3--二元性缺陷的类别
我们研究具有自对偶缺陷的 (3+1)d 量子理论的融合三分类对称性。这种缺陷在物理上是通过对无边组$A$具有1-形式对称性$A[1]$的理论进行半空间测量来实现的,并且已经在连续体和晶格中找到了应用。这些融合3范畴将被称为(广义的)坦巴拉-山神融合3范畴(Tambara-Yamagami fusion3-categories)$(\mathbf{3TY})$。我们考虑布劳尔-皮卡尔和皮卡尔4-基元,用艾廷格夫、尼克希奇和奥斯特里克引入的扩展理论的3-分类版本来构造这些范畴。这 24 个群组对应于直接在 4d 或从 5d 对称拓扑场论 (SymTFT) 中构造对偶缺陷。非退化辫状融合 1 类的维特群自然出现在上述 4 格元中,代表了 (2+1)d TFT 对标准对偶缺陷的丰富。我们的主要目的是研究融合 3 类 $\mathbf{3Vect}(A[1])$ 的梯度扩展。首先,我们使用可逆双模3范畴和布劳尔-皮卡尔4群元。其次,我们利用 $\mathbf{3Vect}(A[1])$ 的布劳尔-皮卡尔四元组可以与其德林费尔德中心的皮卡尔四元组相识别。此外,$\mathbf{3Vect}(A[1])$ 的 Drinfeld 中心代表了 SymTFT 的拓扑缺陷,它完全由 SymTFT 的拓扑表面缺陷所形成的对称强融合 2 类来描述。这些缺陷由配备交替 2 形的有限阿贝尔群分类。我们把相应的编织融合 3 维类的皮卡尔 4 群与利用扭曲德利涅张量乘从某些分级编织融合 1 维类构造的广义维特群联系起来。我们对$mathbb{Z}/2$和$mathbb{Z}/4$分级$mathbf{3TY}$范畴进行了明确的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信