On functor double $\infty$-categories

Jaco Ruit
{"title":"On functor double $\\infty$-categories","authors":"Jaco Ruit","doi":"arxiv-2408.14335","DOIUrl":null,"url":null,"abstract":"In this paper, we study double $\\infty$-categories of double functors. To\nthis end, we exhibit the cartesian closed structure of the $\\infty$-category of\ndouble $\\infty$-categories and various localizations. We prove a theorem that\ncharacterizes the companions and conjoints in functor double\n$\\infty$-categories via the notion of companionable and conjointable 2-cells in\ndouble $\\infty$-categories. Moreover, we show that under suitable conditions,\nfunctor double $\\infty$-categories are horizontally closed. Throughout the\npaper, we highlight a few applications to $(\\infty,2)$-category theory and\nindexed exponentiability.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study double $\infty$-categories of double functors. To this end, we exhibit the cartesian closed structure of the $\infty$-category of double $\infty$-categories and various localizations. We prove a theorem that characterizes the companions and conjoints in functor double $\infty$-categories via the notion of companionable and conjointable 2-cells in double $\infty$-categories. Moreover, we show that under suitable conditions, functor double $\infty$-categories are horizontally closed. Throughout the paper, we highlight a few applications to $(\infty,2)$-category theory and indexed exponentiability.
关于函子双 $\infty$ 类别
在本文中,我们研究双函数的双$infty$-类。为此,我们展示了双$infty$类的笛卡尔封闭结构和各种定位。我们证明了一个定理,它通过双$infty$类中可伴生和可共生的2-细胞的概念,描述了函子双$infty$类中伴生和共生的特征。此外,我们还证明了在合适的条件下,函子双$infty$类是水平封闭的。在整篇论文中,我们着重介绍了$(\infty,2)$范畴理论和指数性的一些应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信