More on soundness in the enriched context

Giacomo Tendas
{"title":"More on soundness in the enriched context","authors":"Giacomo Tendas","doi":"arxiv-2409.00389","DOIUrl":null,"url":null,"abstract":"Working within enriched category theory, we further develop the use of\nsoundness, introduced by Ad\\'amek, Borceux, Lack, and Rosick\\'y for ordinary\ncategories. In particular we investigate: (1) the theory of locally\n$\\Phi$-presentable $\\mathcal V$-categories for a sound class $\\Phi$, (2) the\nproblem of whether every $\\Phi$-accessible $\\mathcal V$-category is\n$\\Psi$-accessible, for given sound classes $\\Phi\\subseteq\\Psi$, and (3) a\nnotion of $\\Phi$-ary equational theory whose $\\mathcal V$-categories of models\ncharacterize algebras for $\\Phi$-ary monads on $\\mathcal V$.","PeriodicalId":501135,"journal":{"name":"arXiv - MATH - Category Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Category Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Working within enriched category theory, we further develop the use of soundness, introduced by Ad\'amek, Borceux, Lack, and Rosick\'y for ordinary categories. In particular we investigate: (1) the theory of locally $\Phi$-presentable $\mathcal V$-categories for a sound class $\Phi$, (2) the problem of whether every $\Phi$-accessible $\mathcal V$-category is $\Psi$-accessible, for given sound classes $\Phi\subseteq\Psi$, and (3) a notion of $\Phi$-ary equational theory whose $\mathcal V$-categories of models characterize algebras for $\Phi$-ary monads on $\mathcal V$.
更多关于丰富背景下的健全性问题
在丰富范畴理论中,我们进一步发展了由阿德梅克(Ad\'amek)、博尔科(Borceux)、拉克(Lack)和罗西克(Rosick\'y )针对普通范畴引入的声音的使用。我们特别研究了(1) 对于声类$\Phi$,局部$\Phi$可呈现的$\mathcal V$类的理论,(2) 是否每个$\Phi$可进入的$\mathcal V$类都是($\Psi$可进入的)问题、(3) $\Phi$-ary 等式理论的运动,其模型的 $\mathcal V$ 类别描述了 $\mathcal V$ 上 $\Phi$-ary 单子的代数式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信