Amenable actions of compact and discrete quantum groups on von Neumann algebras

K. De Commer, J. De Ro
{"title":"Amenable actions of compact and discrete quantum groups on von Neumann algebras","authors":"K. De Commer, J. De Ro","doi":"arxiv-2408.05571","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb{G}$ be a compact quantum group and $A\\subseteq B$ an inclusion\nof $\\sigma$-finite $\\mathbb{G}$-dynamical von Neumann algebras. We prove that\nthe $\\mathbb{G}$-inclusion $A\\subseteq B$ is strongly equivariantly amenable if\nand only if it is equivariantly amenable, using techniques from the theory of\nnon-commutative $L^p$-spaces. In particular, if $(A, \\alpha)$ is a\n$\\mathbb{G}$-dynamical von Neumann algebra with $A$ $\\sigma$-finite, the action\n$\\alpha: A \\curvearrowleft \\mathbb{G}$ is strongly (inner) amenable if and only\nif the action $\\alpha: A \\curvearrowleft \\mathbb{G}$ is (inner) amenable. By\nduality, we also obtain the same result for $\\mathbb{G}$ a discrete quantum\ngroup, so that, in particular, a discrete quantum group is inner amenable if\nand only it is strongly inner amenable. This result can be seen as a dynamical\ngeneralization of Tomatsu's result on the amenability/co-amenability duality.\nWe provide an example of a co-amenable (non-Kac) compact quantum group that\nacts non-amenably on a von Neumann algebra. By duality, this gives an explicit\nexample of an amenable discrete quantum group that acts non-amenably on a von\nNeumann algebra.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $\mathbb{G}$ be a compact quantum group and $A\subseteq B$ an inclusion of $\sigma$-finite $\mathbb{G}$-dynamical von Neumann algebras. We prove that the $\mathbb{G}$-inclusion $A\subseteq B$ is strongly equivariantly amenable if and only if it is equivariantly amenable, using techniques from the theory of non-commutative $L^p$-spaces. In particular, if $(A, \alpha)$ is a $\mathbb{G}$-dynamical von Neumann algebra with $A$ $\sigma$-finite, the action $\alpha: A \curvearrowleft \mathbb{G}$ is strongly (inner) amenable if and only if the action $\alpha: A \curvearrowleft \mathbb{G}$ is (inner) amenable. By duality, we also obtain the same result for $\mathbb{G}$ a discrete quantum group, so that, in particular, a discrete quantum group is inner amenable if and only it is strongly inner amenable. This result can be seen as a dynamical generalization of Tomatsu's result on the amenability/co-amenability duality. We provide an example of a co-amenable (non-Kac) compact quantum group that acts non-amenably on a von Neumann algebra. By duality, this gives an explicit example of an amenable discrete quantum group that acts non-amenably on a von Neumann algebra.
紧凑和离散量子群在冯-诺依曼代数上的可修正作用
让 $\mathbb{G}$ 是一个紧凑的量子群,而 $A\subseteq B$ 是$\sigma$-finite$\mathbb{G}$-dynamical von Neumann algebras 的一个包含。我们利用非交换$L^p$空间理论中的技术证明,$\mathbb{G}$包含$A/subseteq B$是强等变可容性的,当且仅当它是等变可容性的。特别是,如果 $(A, \alpha)$ 是一个具有 $A$ $sigma$ 有限性的 $mathbb{G}$ 动态 von Neumann 代数,那么作用$\alpha:当且仅当动作$alpha:A \curvearrowleft \mathbb{G}$ 是(内部)可处理的。通过对偶性,我们对离散量子群的 $\mathbb{G}$ 也得到了同样的结果,因此,只有当且仅当一个离散量子群是强内可容性的时候,它才是内可容性的。我们举例说明了一个在 von Neumann 代数上非可门地作用的可门(非 Kac)紧凑量子群。根据对偶性,这给出了一个非可门性地作用于 von Neumann 代数的可门性离散量子群的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信