Debiased lasso after sample splitting for estimation and inference in high‐dimensional generalized linear models

Omar Vazquez, Bin Nan
{"title":"Debiased lasso after sample splitting for estimation and inference in high‐dimensional generalized linear models","authors":"Omar Vazquez, Bin Nan","doi":"10.1002/cjs.11827","DOIUrl":null,"url":null,"abstract":"We consider random sample splitting for estimation and inference in high‐dimensional generalized linear models (GLMs), where we first apply the lasso to select a submodel using one subsample and then apply the debiased lasso to fit the selected model using the remaining subsample. We show that a sample splitting procedure based on the debiased lasso yields asymptotically normal estimates under mild conditions and that multiple splitting can address the loss of efficiency. Our simulation results indicate that using the debiased lasso instead of the standard maximum likelihood method in the estimation stage can vastly reduce the bias and variance of the resulting estimates. Furthermore, our multiple splitting debiased lasso method has better numerical performance than some existing methods for high‐dimensional GLMs proposed in the recent literature. We illustrate the proposed multiple splitting method with an analysis of the smoking data of the Mid‐South Tobacco Case–Control Study.","PeriodicalId":501595,"journal":{"name":"The Canadian Journal of Statistics","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjs.11827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider random sample splitting for estimation and inference in high‐dimensional generalized linear models (GLMs), where we first apply the lasso to select a submodel using one subsample and then apply the debiased lasso to fit the selected model using the remaining subsample. We show that a sample splitting procedure based on the debiased lasso yields asymptotically normal estimates under mild conditions and that multiple splitting can address the loss of efficiency. Our simulation results indicate that using the debiased lasso instead of the standard maximum likelihood method in the estimation stage can vastly reduce the bias and variance of the resulting estimates. Furthermore, our multiple splitting debiased lasso method has better numerical performance than some existing methods for high‐dimensional GLMs proposed in the recent literature. We illustrate the proposed multiple splitting method with an analysis of the smoking data of the Mid‐South Tobacco Case–Control Study.
用于高维广义线性模型估计和推理的样本分割后去偏套索技术
我们考虑了用于高维广义线性模型(GLM)估计和推断的随机样本分割,在这种情况下,我们首先应用套索(lasso)使用一个子样本选择一个子模型,然后应用去杂套索(debiased lasso)使用剩余子样本拟合所选模型。我们的研究表明,在温和的条件下,基于去杂套索的样本拆分程序可以得到渐近正态的估计值,而且多次拆分可以解决效率损失的问题。我们的模拟结果表明,在估计阶段使用去偏套索法而不是标准的极大似然法,可以大大减少估计结果的偏差和方差。此外,与近期文献中提出的一些现有高维 GLM 方法相比,我们的多重分裂去偏 lasso 方法具有更好的数值性能。我们通过分析中南烟草病例对照研究的吸烟数据来说明所提出的多重分割方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信