Distributed learning for kernel mode–based regression

Tao Wang
{"title":"Distributed learning for kernel mode–based regression","authors":"Tao Wang","doi":"10.1002/cjs.11831","DOIUrl":null,"url":null,"abstract":"We propose a parametric kernel mode–based regression built on the mode value, which provides robust and efficient estimators for datasets containing outliers or heavy‐tailed distributions. To address the challenges posed by massive datasets, we integrate this regression method with distributed statistical learning techniques, which greatly reduces the required amount of primary memory and simultaneously accommodates heterogeneity in the estimation process. By approximating the local kernel objective function with a least squares format, we are able to preserve compact statistics for each worker machine, facilitating the reconstruction of estimates for the entire dataset with minimal asymptotic approximation error. Additionally, we explore shrinkage estimation through local quadratic approximation, showcasing that the resulting estimator possesses the oracle property through an adaptive LASSO approach. The finite‐sample performance of the developed method is illustrated using simulations and real data analysis.","PeriodicalId":501595,"journal":{"name":"The Canadian Journal of Statistics","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjs.11831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a parametric kernel mode–based regression built on the mode value, which provides robust and efficient estimators for datasets containing outliers or heavy‐tailed distributions. To address the challenges posed by massive datasets, we integrate this regression method with distributed statistical learning techniques, which greatly reduces the required amount of primary memory and simultaneously accommodates heterogeneity in the estimation process. By approximating the local kernel objective function with a least squares format, we are able to preserve compact statistics for each worker machine, facilitating the reconstruction of estimates for the entire dataset with minimal asymptotic approximation error. Additionally, we explore shrinkage estimation through local quadratic approximation, showcasing that the resulting estimator possesses the oracle property through an adaptive LASSO approach. The finite‐sample performance of the developed method is illustrated using simulations and real data analysis.
基于核模式回归的分布式学习
我们提出了一种基于模态值的参数核模态回归方法,它能为包含异常值或重尾分布的数据集提供稳健高效的估计值。为了应对海量数据集带来的挑战,我们将这种回归方法与分布式统计学习技术相结合,从而大大减少了所需的主内存量,并同时适应了估计过程中的异质性。通过用最小二乘法近似本地核目标函数,我们能够保留每台工作机的紧凑统计数据,从而以最小的渐近近似误差重建整个数据集的估计值。此外,我们还探索了通过局部二次逼近进行收缩估计的方法,并通过自适应 LASSO 方法展示了由此产生的估计器具有神谕特性。我们通过模拟和实际数据分析说明了所开发方法的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信