{"title":"On the R-matrix realization of the quantum loop algebra. The case of $U_q(D^{(2)}_n)$","authors":"A. Liashyk, S. Pakuliak","doi":"arxiv-2409.02021","DOIUrl":null,"url":null,"abstract":"The connection between the R-matrix realization and Drinfeld's realization of\nthe quantum loop algebra $U_q(D^{(2)}_n)$ is considered using the Gaussian\ndecomposition approach proposed by J. Ding and I. B. Frenkel. Our main result\nis a description of the embedding $U_q(D^{(2)}_{n-1})\\hookrightarrow\nU_q(D^{(2)}_n)$ that underlies this connection. Explicit relations between all\nGaussian coordinates of the L-operators and the currents are presented.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The connection between the R-matrix realization and Drinfeld's realization of
the quantum loop algebra $U_q(D^{(2)}_n)$ is considered using the Gaussian
decomposition approach proposed by J. Ding and I. B. Frenkel. Our main result
is a description of the embedding $U_q(D^{(2)}_{n-1})\hookrightarrow
U_q(D^{(2)}_n)$ that underlies this connection. Explicit relations between all
Gaussian coordinates of the L-operators and the currents are presented.
丁杰和弗伦克尔(I. B. Frenkel)提出的高斯和分解方法,考虑了量子环代数$U_q(D^{(2)}_n)$的R矩阵实现和德林菲尔德实现之间的联系。我们的主要结果是对嵌入 $U_q(D^{(2)}_{n-1})/hookrightarrowU_q(D^{(2)}_n)$ 的描述,它是这种联系的基础。本文提出了 L 运算器的全高斯坐标与电流之间的明确关系。