{"title":"Adopted spectral tau approach for the time-fractional diffusion equation via seventh-kind Chebyshev polynomials","authors":"W. M. Abd-Elhameed, Y. H. Youssri, A. G. Atta","doi":"10.1186/s13661-024-01907-6","DOIUrl":null,"url":null,"abstract":"This study utilizes a spectral tau method to acquire an accurate numerical solution of the time-fractional diffusion equation. The central point of this approach is to use double basis functions in terms of certain Chebyshev polynomials, namely Chebyshev polynomials of the seventh-kind and their shifted ones. Some new formulas concerned with these polynomials are derived in this study. A rigorous error analysis of the proposed double expansion further corroborates our research. This analysis is based on establishing some inequalities regarding the selected basis functions. Several numerical examples validate the precision and effectiveness of the suggested method.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"3 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01907-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
This study utilizes a spectral tau method to acquire an accurate numerical solution of the time-fractional diffusion equation. The central point of this approach is to use double basis functions in terms of certain Chebyshev polynomials, namely Chebyshev polynomials of the seventh-kind and their shifted ones. Some new formulas concerned with these polynomials are derived in this study. A rigorous error analysis of the proposed double expansion further corroborates our research. This analysis is based on establishing some inequalities regarding the selected basis functions. Several numerical examples validate the precision and effectiveness of the suggested method.
本研究利用谱 tau 方法获得时间分数扩散方程的精确数值解。该方法的核心是使用某些切比雪夫多项式(即七次切比雪夫多项式及其移位多项式)的双基函数。本研究得出了一些与这些多项式有关的新公式。对所提出的双重展开的严格误差分析进一步证实了我们的研究。该分析基于建立与所选基础函数相关的一些不等式。几个数值示例验证了所建议方法的精确性和有效性。
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.