Complexity of Unary Exclusive Nondeterministic Finite Automata

Martin KutribInstitut für Informatik, Universität Giessen, Andreas MalcherInstitut für Informatik, Universität Giessen, Matthias WendlandtInstitut für Informatik, Universität Giessen
{"title":"Complexity of Unary Exclusive Nondeterministic Finite Automata","authors":"Martin KutribInstitut für Informatik, Universität Giessen, Andreas MalcherInstitut für Informatik, Universität Giessen, Matthias WendlandtInstitut für Informatik, Universität Giessen","doi":"arxiv-2409.06967","DOIUrl":null,"url":null,"abstract":"Exclusive nondeterministic finite automata (XNFA) are nondeterministic finite\nautomata with a special acceptance condition. An input is accepted if there is\nexactly one accepting path in its computation tree. If there are none or more\nthan one accepting paths, the input is rejected. We study the descriptional\ncomplexity of XNFA accepting unary languages. While the state costs for mutual\nsimulations with DFA and NFA over general alphabets differ significantly from\nthe known types of finite automata, it turns out that the state costs for the\nsimulations in the unary case are in the order of magnitude of the general\ncase. In particular, the state costs for the simulation of an XNFA by a DFA or\nan NFA are $e^{\\theta(\\sqrt{n \\cdot ln{n}})}$. Conversely, converting an NFA to\nan equivalent XNFA may cost $e^{\\theta(\\sqrt{n \\cdot ln{n}})}$ states as well.\nAll bounds obtained are also tight in the order of magnitude. Finally, we\ninvestigate the computational complexity of different decision problems for\nunary XNFA and it is shown that the problems of emptiness, universality,\ninclusion, and equivalence are coNP-complete, whereas the general membership\nproblem is NL-complete.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Exclusive nondeterministic finite automata (XNFA) are nondeterministic finite automata with a special acceptance condition. An input is accepted if there is exactly one accepting path in its computation tree. If there are none or more than one accepting paths, the input is rejected. We study the descriptional complexity of XNFA accepting unary languages. While the state costs for mutual simulations with DFA and NFA over general alphabets differ significantly from the known types of finite automata, it turns out that the state costs for the simulations in the unary case are in the order of magnitude of the general case. In particular, the state costs for the simulation of an XNFA by a DFA or an NFA are $e^{\theta(\sqrt{n \cdot ln{n}})}$. Conversely, converting an NFA to an equivalent XNFA may cost $e^{\theta(\sqrt{n \cdot ln{n}})}$ states as well. All bounds obtained are also tight in the order of magnitude. Finally, we investigate the computational complexity of different decision problems for unary XNFA and it is shown that the problems of emptiness, universality, inclusion, and equivalence are coNP-complete, whereas the general membership problem is NL-complete.
一元排他性非确定有限自动机的复杂性
排他性非确定有限自动机(XNFA)是具有特殊接受条件的非确定有限自动机。如果输入的计算树中只有一条接受路径,则该输入被接受。如果没有或只有一条以上的接受路径,则拒绝该输入。我们研究了 XNFA 接受一元语言的描述复杂性。虽然在一般字母表上与 DFA 和 NFA 相互模拟的状态代价与已知的有限自动机类型差别很大,但事实证明,在一元情况下模拟的状态代价在数量级上与一般情况相同。特别是,用 DFA 或 NFA 模拟 XNFA 的状态代价是 $e^{theta(\sqrt{n \cdot ln{n}})}$ 。相反,将一个 NFA 转换为一个等价的 XNFA 可能也会花费 $e^{theta(\sqrt{n \cdot ln{n}}) }$ 的状态。最后,我们研究了一元 XNFA 不同决策问题的计算复杂性,结果表明空性、普遍性、包含性和等价性问题都是 coNP-complete,而一般成员问题则是 NL-complete。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信