Robust Robustness

Ian Ball, Deniz Kattwinkel
{"title":"Robust Robustness","authors":"Ian Ball, Deniz Kattwinkel","doi":"arxiv-2408.16898","DOIUrl":null,"url":null,"abstract":"The maxmin approach to distributional robustness evaluates each mechanism\naccording to its payoff guarantee over all priors in an ambiguity set. We\npropose a refinement: the guarantee must be approximately satisfied at priors\nnear the ambiguity set (in the weak topology). We call such a guarantee robust.\nThe payoff guarantees from some maxmin-optimal mechanisms in the literature are\nnot robust. We show, however, that over certain standard ambiguity sets (such\nas continuous moment sets), every mechanism's payoff guarantee is robust. We\ngive a behavioral characterization of our refined robustness notion by imposing\na new continuity axiom on maxmin preferences.","PeriodicalId":501188,"journal":{"name":"arXiv - ECON - Theoretical Economics","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - ECON - Theoretical Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The maxmin approach to distributional robustness evaluates each mechanism according to its payoff guarantee over all priors in an ambiguity set. We propose a refinement: the guarantee must be approximately satisfied at priors near the ambiguity set (in the weak topology). We call such a guarantee robust. The payoff guarantees from some maxmin-optimal mechanisms in the literature are not robust. We show, however, that over certain standard ambiguity sets (such as continuous moment sets), every mechanism's payoff guarantee is robust. We give a behavioral characterization of our refined robustness notion by imposing a new continuity axiom on maxmin preferences.
稳健性
分布稳健性的最大值方法是根据其对模糊集合中所有先验的报酬保证来评估每种机制。我们提出了一个改进方案:在接近模糊集的先验上(在弱拓扑中),保证必须近似满足。我们称这样的保证为稳健保证。文献中一些最大最优机制的报酬保证并不稳健。然而,我们证明,在某些标准模糊集(如连续矩集)上,每个机制的报酬保证都是稳健的。我们通过对最大最小偏好施加一个新的连续性公理,给出了我们完善的稳健性概念的行为特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信