Marginal Structural Modeling of Representative Treatment Trajectories

Jiewen Liu, Todd A. Miano, Stephen Griffiths, Michael G. S. Shashaty, Wei Yang
{"title":"Marginal Structural Modeling of Representative Treatment Trajectories","authors":"Jiewen Liu, Todd A. Miano, Stephen Griffiths, Michael G. S. Shashaty, Wei Yang","doi":"arxiv-2409.04933","DOIUrl":null,"url":null,"abstract":"Marginal structural models (MSMs) are widely used in observational studies to\nestimate the causal effect of time-varying treatments. Despite its popularity,\nlimited attention has been paid to summarizing the treatment history in the\noutcome model, which proves particularly challenging when individuals'\ntreatment trajectories exhibit complex patterns over time. Commonly used\nmetrics such as the average treatment level fail to adequately capture the\ntreatment history, hindering causal interpretation. For scenarios where\ntreatment histories exhibit distinct temporal patterns, we develop a new\napproach to parameterize the outcome model. We apply latent growth curve\nanalysis to identify representative treatment trajectories from the observed\ndata and use the posterior probability of latent class membership to summarize\nthe different treatment trajectories. We demonstrate its use in parameterizing\nthe MSMs, which facilitates the interpretations of the results. We apply the\nmethod to analyze data from an existing cohort of lung transplant recipients to\nestimate the effect of Tacrolimus concentrations on the risk of incident\nchronic kidney disease.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Marginal structural models (MSMs) are widely used in observational studies to estimate the causal effect of time-varying treatments. Despite its popularity, limited attention has been paid to summarizing the treatment history in the outcome model, which proves particularly challenging when individuals' treatment trajectories exhibit complex patterns over time. Commonly used metrics such as the average treatment level fail to adequately capture the treatment history, hindering causal interpretation. For scenarios where treatment histories exhibit distinct temporal patterns, we develop a new approach to parameterize the outcome model. We apply latent growth curve analysis to identify representative treatment trajectories from the observed data and use the posterior probability of latent class membership to summarize the different treatment trajectories. We demonstrate its use in parameterizing the MSMs, which facilitates the interpretations of the results. We apply the method to analyze data from an existing cohort of lung transplant recipients to estimate the effect of Tacrolimus concentrations on the risk of incident chronic kidney disease.
代表性治疗轨迹的边际结构模型
边际结构模型(MSM)被广泛应用于观察性研究,以估计随时间变化的治疗方法的因果效应。尽管边际结构模型很受欢迎,但人们对在结果模型中总结治疗历史的关注却很有限,而当个体的治疗轨迹随时间呈现出复杂的模式时,边际结构模型就显得尤其具有挑战性。常用的指标,如平均治疗水平,无法充分反映治疗历史,从而阻碍了因果关系的解释。针对治疗历史表现出独特时间模式的情况,我们开发了一种新方法来对结果模型进行参数化。我们应用潜增长曲线分析法从观测数据中识别出具有代表性的治疗轨迹,并使用潜类成员资格的后验概率来总结不同的治疗轨迹。我们展示了该方法在 MSM 参数化中的应用,这有助于对结果进行解释。我们将该方法用于分析现有肺移植受者队列的数据,以估计他克莫司浓度对慢性肾病发病风险的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信