Incorporating external data for analyzing randomized clinical trials: A transfer learning approach

Yujia Gu, Hanzhong Liu, Wei Ma
{"title":"Incorporating external data for analyzing randomized clinical trials: A transfer learning approach","authors":"Yujia Gu, Hanzhong Liu, Wei Ma","doi":"arxiv-2409.04126","DOIUrl":null,"url":null,"abstract":"Randomized clinical trials are the gold standard for analyzing treatment\neffects, but high costs and ethical concerns can limit recruitment, potentially\nleading to invalid inferences. Incorporating external trial data with similar\ncharacteristics into the analysis using transfer learning appears promising for\naddressing these issues. In this paper, we present a formal framework for\napplying transfer learning to the analysis of clinical trials, considering\nthree key perspectives: transfer algorithm, theoretical foundation, and\ninference method. For the algorithm, we adopt a parameter-based transfer\nlearning approach to enhance the lasso-adjusted stratum-specific estimator\ndeveloped for estimating treatment effects. A key component in constructing the\ntransfer learning estimator is deriving the regression coefficient estimates\nwithin each stratum, accounting for the bias between source and target data. To\nprovide a theoretical foundation, we derive the $l_1$ convergence rate for the\nestimated regression coefficients and establish the asymptotic normality of the\ntransfer learning estimator. Our results show that when external trial data\nresembles current trial data, the sample size requirements can be reduced\ncompared to using only the current trial data. Finally, we propose a consistent\nnonparametric variance estimator to facilitate inference. Numerical studies\ndemonstrate the effectiveness and robustness of our proposed estimator across\nvarious scenarios.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Randomized clinical trials are the gold standard for analyzing treatment effects, but high costs and ethical concerns can limit recruitment, potentially leading to invalid inferences. Incorporating external trial data with similar characteristics into the analysis using transfer learning appears promising for addressing these issues. In this paper, we present a formal framework for applying transfer learning to the analysis of clinical trials, considering three key perspectives: transfer algorithm, theoretical foundation, and inference method. For the algorithm, we adopt a parameter-based transfer learning approach to enhance the lasso-adjusted stratum-specific estimator developed for estimating treatment effects. A key component in constructing the transfer learning estimator is deriving the regression coefficient estimates within each stratum, accounting for the bias between source and target data. To provide a theoretical foundation, we derive the $l_1$ convergence rate for the estimated regression coefficients and establish the asymptotic normality of the transfer learning estimator. Our results show that when external trial data resembles current trial data, the sample size requirements can be reduced compared to using only the current trial data. Finally, we propose a consistent nonparametric variance estimator to facilitate inference. Numerical studies demonstrate the effectiveness and robustness of our proposed estimator across various scenarios.
结合外部数据分析随机临床试验:迁移学习法
随机临床试验是分析治疗效果的黄金标准,但高昂的成本和伦理问题会限制试验的招募,从而可能导致无效的推论。利用迁移学习将具有相似特征的外部试验数据纳入分析似乎有望解决这些问题。在本文中,我们提出了一个将迁移学习应用于临床试验分析的正式框架,其中考虑了三个关键视角:迁移算法、理论基础和推断方法。在算法方面,我们采用基于参数的迁移学习方法来增强为估计治疗效果而开发的套索调整分层估计法。构建转移学习估计器的一个关键部分是得出每个分层的回归系数估计值,并考虑源数据和目标数据之间的偏差。为了提供理论基础,我们推导出了回归系数估计值的 l_1$ 收敛率,并建立了转移学习估计器的渐近正态性。我们的结果表明,当外部试验数据与当前试验数据相结合时,与只使用当前试验数据相比,可以减少样本量要求。最后,我们提出了一种一致的非参数方差估计器,以方便推理。数值研究证明了我们提出的估计器在各种情况下的有效性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信