The $\infty$-S test via regression quantile affine LASSO

Sylvain Sardy, Xiaoyu Ma, Hugo Gaible
{"title":"The $\\infty$-S test via regression quantile affine LASSO","authors":"Sylvain Sardy, Xiaoyu Ma, Hugo Gaible","doi":"arxiv-2409.04256","DOIUrl":null,"url":null,"abstract":"The nonparametric sign test dates back to the early 18th century with a data\nanalysis by John Arbuthnot. It is an alternative to Gosset's more recent\n$t$-test for consistent differences between two sets of observations. Fisher's\n$F$-test is a generalization of the $t$-test to linear regression and linear\nnull hypotheses. Only the sign test is robust to non-Gaussianity. Gutenbrunner\net al. [1993] derived a version of the sign test for linear null hypotheses in\nthe spirit of the F-test, which requires the difficult estimation of the\nsparsity function. We propose instead a new sign test called $\\infty$-S test\nvia the convex analysis of a point estimator that thresholds the estimate\ntowards the null hypothesis of the test.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The nonparametric sign test dates back to the early 18th century with a data analysis by John Arbuthnot. It is an alternative to Gosset's more recent $t$-test for consistent differences between two sets of observations. Fisher's $F$-test is a generalization of the $t$-test to linear regression and linear null hypotheses. Only the sign test is robust to non-Gaussianity. Gutenbrunner et al. [1993] derived a version of the sign test for linear null hypotheses in the spirit of the F-test, which requires the difficult estimation of the sparsity function. We propose instead a new sign test called $\infty$-S test via the convex analysis of a point estimator that thresholds the estimate towards the null hypothesis of the test.
通过回归量子仿射 LASSO 进行 $\infty$-S 检验
非参数符号检验可追溯到 18 世纪初约翰-阿布特诺(John Arbuthnot)的数据分析。它是戈塞特(Gosset)较新的t检验的替代方法,用于检验两组观测值之间的一致性差异。费雪的$F$检验是将$t$检验推广到线性回归和线性零假设。只有符号检验对非高斯性是稳健的。Gutenbrunneret 等人[1993]根据 F 检验的精神,推导出了线性零假设的符号检验版本,该版本需要对稀疏性函数进行困难的估计。我们提出了一种新的符号检验,称为"$infty$-S 检验",它通过对点估计器的凸分析,将估计值阈值指向检验的零假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信