Online monitoring technology for deep phenotyping of cognitive impairment after stroke

Dragos-Cristian Gruia, Valentina Giunchiglia, Aoife Coghlan, Sophie Brook, Soma Banerjee, Jo Kwan, Peter J. Hellyer, Adam Hampshire, Fatemeh Geranmayeh
{"title":"Online monitoring technology for deep phenotyping of cognitive impairment after stroke","authors":"Dragos-Cristian Gruia, Valentina Giunchiglia, Aoife Coghlan, Sophie Brook, Soma Banerjee, Jo Kwan, Peter J. Hellyer, Adam Hampshire, Fatemeh Geranmayeh","doi":"10.1101/2024.09.06.24313173","DOIUrl":null,"url":null,"abstract":"<strong>Background</strong> Despite the high prevalence of disabling post-stroke cognitive sequalae, these impairments are often underdiagnosed and rarely monitored longitudinally. Provision of unsupervised remote online cognitive technology would provide a scalable solution to this problem. However, despite recent advances, such technology is currently lacking, with existing tools either not meeting the scalability challenge or not optimised for specific applications in post-stroke cognitive impairment. To address this gap, we designed and developed a comprehensive online battery highly optimised for detecting cognitive impairments in stroke survivors.","PeriodicalId":501367,"journal":{"name":"medRxiv - Neurology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.06.24313173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background Despite the high prevalence of disabling post-stroke cognitive sequalae, these impairments are often underdiagnosed and rarely monitored longitudinally. Provision of unsupervised remote online cognitive technology would provide a scalable solution to this problem. However, despite recent advances, such technology is currently lacking, with existing tools either not meeting the scalability challenge or not optimised for specific applications in post-stroke cognitive impairment. To address this gap, we designed and developed a comprehensive online battery highly optimised for detecting cognitive impairments in stroke survivors.
用于脑卒中后认知障碍深度表型的在线监测技术
背景 尽管脑卒中后致残性认知后遗症的发病率很高,但这些损伤往往诊断不足,也很少得到纵向监测。提供无监督远程在线认知技术将为这一问题提供可扩展的解决方案。然而,尽管最近取得了一些进展,但目前还缺乏这样的技术,现有的工具要么无法应对可扩展性的挑战,要么没有针对卒中后认知障碍的具体应用进行优化。为了弥补这一不足,我们设计并开发了一种综合性在线电池,该电池经过高度优化,可用于检测中风幸存者的认知障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信