Multipartite Embezzlement of Entanglement

Lauritz van Luijk, Alexander Stottmeister, Henrik Wilming
{"title":"Multipartite Embezzlement of Entanglement","authors":"Lauritz van Luijk, Alexander Stottmeister, Henrik Wilming","doi":"arxiv-2409.07646","DOIUrl":null,"url":null,"abstract":"Embezzlement of entanglement refers to the task of extracting entanglement\nfrom an entanglement resource via local operations and without communication\nwhile perturbing the resource arbitrarily little. Recently, the existence of\nembezzling states of bipartite systems of type III von Neumann algebras was\nshown. However, both the multipartite case and the precise relation between\nembezzling states and the notion of embezzling families, as originally defined\nby van Dam and Hayden, was left open. Here, we show that finite-dimensional\napproximations of multipartite embezzling states form multipartite embezzling\nfamilies. In contrast, not every embezzling family converges to an embezzling\nstate. We identify an additional consistency condition that ensures that an\nembezzling family converges to an embezzling state. This criterion\ndistinguishes the embezzling family of van Dam and Hayden from the one by\nLeung, Toner, and Watrous. The latter generalizes to the multipartite setting.\nBy taking a limit, we obtain a multipartite system of commuting type III$_1$\nfactors on which every state is an embezzling state. We discuss our results in\nthe context of quantum field theory and quantum many-body physics. As open\nproblems, we ask whether vacua of relativistic quantum fields in more than two\nspacetime dimensions are multipartite embezzling states and whether\nmultipartite embezzlement allows for an operator-algebraic characterization.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Embezzlement of entanglement refers to the task of extracting entanglement from an entanglement resource via local operations and without communication while perturbing the resource arbitrarily little. Recently, the existence of embezzling states of bipartite systems of type III von Neumann algebras was shown. However, both the multipartite case and the precise relation between embezzling states and the notion of embezzling families, as originally defined by van Dam and Hayden, was left open. Here, we show that finite-dimensional approximations of multipartite embezzling states form multipartite embezzling families. In contrast, not every embezzling family converges to an embezzling state. We identify an additional consistency condition that ensures that an embezzling family converges to an embezzling state. This criterion distinguishes the embezzling family of van Dam and Hayden from the one by Leung, Toner, and Watrous. The latter generalizes to the multipartite setting. By taking a limit, we obtain a multipartite system of commuting type III$_1$ factors on which every state is an embezzling state. We discuss our results in the context of quantum field theory and quantum many-body physics. As open problems, we ask whether vacua of relativistic quantum fields in more than two spacetime dimensions are multipartite embezzling states and whether multipartite embezzlement allows for an operator-algebraic characterization.
多方侵吞纠缠
纠缠的 "盗用"(Embezzlement of entanglement)是指通过局部操作从纠缠资源中提取纠缠,而不进行通信,同时对资源进行任意小的扰动。最近,有人证明了 III 型冯-诺依曼代数的双元系统存在 "侵吞 "状态。然而,在多方系统的情况下,embezzling 状态与 van Dam 和 Hayden 最初定义的 embezzling 族概念之间的确切关系却一直悬而未决。在这里,我们证明了多方贪污状态的有限维近似构成了多方贪污家族。相反,并非每个贪污家族都会收敛到贪污状态。我们确定了一个额外的一致性条件,以确保贪污家族趋同于贪污状态。这一标准将范达姆和海登的贪污家族与梁、托纳和沃特鲁斯的贪污家族区分开来。通过取一个极限,我们得到了一个多方III$_1$型共轭因子系统,在这个系统上,每个状态都是贪污状态。我们将在量子场论和量子多体物理学的背景下讨论我们的结果。作为开放性问题,我们提出在超过两个时空维度的相对论量子场虚空是否是多方侵吞态,以及多方侵吞态是否允许算子代数特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信