On the key kinetic interactions between NOx and unsaturated hydrocarbons: H-atom abstraction from C3-C7 alkynes and dienes by NO2

Zhengyan Guo, Hongqing Wu, Ruoyue Tang, Xinrui Ren, Ting Zhang, Mingrui Wang, Guojie Liang, Hengjie Guo, Song Cheng
{"title":"On the key kinetic interactions between NOx and unsaturated hydrocarbons: H-atom abstraction from C3-C7 alkynes and dienes by NO2","authors":"Zhengyan Guo, Hongqing Wu, Ruoyue Tang, Xinrui Ren, Ting Zhang, Mingrui Wang, Guojie Liang, Hengjie Guo, Song Cheng","doi":"arxiv-2408.17277","DOIUrl":null,"url":null,"abstract":"An adequate understanding of NOx interacting chemistry is a prerequisite for\na smoother transition to carbon lean and carbon free fuels such as ammonia and\nhydrogen. In this regard, this study presents a comprehensive study on the H\natom abstraction by NO2 from C3 to C7 alkynes and dienes forming 3 HNO2 isomers\n(i.e., TRANS HONO, HNO2, and CIS HONO), encompassing 8 hydrocarbons and 24\nreactions. Through a combination of high level quantum chemistry computation,\nthe rate coefficients for all studied reactions, over a temperature range from\n298 to 2000 K, are computed based on Transition State Theory using the Master\nEquation System Solver program with considering unsymmetric tunneling\ncorrections. Comprehensive analysis of branching ratios elucidates the\ndiversity and similarities between different species, different HNO2 isomers,\nand different abstraction sites. Incorporating the calculated rate parameters\ninto a recent chemistry model reveals the significant influences of this type\nof reaction on model performance, where the updated model is consistently more\nreactive for all the alkynes and dienes studied in predicting autoignition\ncharacteristics. Sensitivity and flux analyses are further conducted, through\nwhich the importance of H atom abstractions by NO2 is highlighted. With the\nupdated rate parameters, the branching ratios in fuel consumption clearly\nshifts towards H atom abstractions by NO2 while away from H atom abstractions\nby OH. The obtained results emphasize the need for adequately representing\nthese kinetics in new alkyne and diene chemistry models to be developed by\nusing the rate parameters determined in this study, and call for future efforts\nto experimentally investigate NO2 blending effects on alkynes and dienes.","PeriodicalId":501304,"journal":{"name":"arXiv - PHYS - Chemical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An adequate understanding of NOx interacting chemistry is a prerequisite for a smoother transition to carbon lean and carbon free fuels such as ammonia and hydrogen. In this regard, this study presents a comprehensive study on the H atom abstraction by NO2 from C3 to C7 alkynes and dienes forming 3 HNO2 isomers (i.e., TRANS HONO, HNO2, and CIS HONO), encompassing 8 hydrocarbons and 24 reactions. Through a combination of high level quantum chemistry computation, the rate coefficients for all studied reactions, over a temperature range from 298 to 2000 K, are computed based on Transition State Theory using the Master Equation System Solver program with considering unsymmetric tunneling corrections. Comprehensive analysis of branching ratios elucidates the diversity and similarities between different species, different HNO2 isomers, and different abstraction sites. Incorporating the calculated rate parameters into a recent chemistry model reveals the significant influences of this type of reaction on model performance, where the updated model is consistently more reactive for all the alkynes and dienes studied in predicting autoignition characteristics. Sensitivity and flux analyses are further conducted, through which the importance of H atom abstractions by NO2 is highlighted. With the updated rate parameters, the branching ratios in fuel consumption clearly shifts towards H atom abstractions by NO2 while away from H atom abstractions by OH. The obtained results emphasize the need for adequately representing these kinetics in new alkyne and diene chemistry models to be developed by using the rate parameters determined in this study, and call for future efforts to experimentally investigate NO2 blending effects on alkynes and dienes.
氮氧化物与不饱和碳氢化合物之间的关键动力学相互作用:二氧化氮从 C3-C7 烯炔和二烯中抽取 H 原子
充分了解氮氧化物的相互作用化学性质是更顺利地过渡到贫碳和无碳燃料(如氨和氢)的先决条件。为此,本研究全面研究了 NO2 从 C3 至 C7 烯烃和二烯中抽取 Hatom 形成 3 种 HNO2 异构体(即 TRANS HONO、HNO2 和 CIS HONO)的过程,包括 8 种碳氢化合物和 24 种反应。通过结合高水平的量子化学计算,以过渡态理论为基础,使用主方程系统求解程序计算了所有研究反应的速率系数,温度范围为 298 至 2000 K,并考虑了非对称隧道校正。对支化率的综合分析阐明了不同物种、不同 HNO2 异构体和不同抽取位点之间的多样性和相似性。将计算出的速率参数纳入最新的化学模型显示了这类反应对模型性能的重大影响,更新后的模型在预测自燃特性时对所有研究的炔烃和二烯烃都具有一致的反应性。进一步进行了灵敏度和通量分析,突出了二氧化氮抽取 H 原子的重要性。随着速率参数的更新,燃料消耗的分支比率明显转向由 NO2 抽取 H 原子,而不是由 OH 抽取 H 原子。所获得的结果强调了利用本研究确定的速率参数在即将开发的新炔烃和二烯烃化学模型中充分反映这些动力学的必要性,并呼吁今后努力通过实验研究二氧化氮对炔烃和二烯烃的掺混效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信