Bayesian Inference General Procedures for A Single-subject Test Study

Jie Li, Gary Green, Sarah J. A. Carr, Peng Liu, Jian Zhang
{"title":"Bayesian Inference General Procedures for A Single-subject Test Study","authors":"Jie Li, Gary Green, Sarah J. A. Carr, Peng Liu, Jian Zhang","doi":"arxiv-2408.15419","DOIUrl":null,"url":null,"abstract":"This paper presents a Bayesian Inference General Procedures for A\nSingle-Subject Test (BIGPAST), designed to mitigate the effects of skewness.\nBIGPAST operates under the null hypothesis that the single-subject follows the\nsame distribution as the control group. We assess BIGPAST's performance against other methods through a series of\nsimulation studies. The results demonstrate that BIGPAST is robust against\ndeviations from normality and outperforms the existing approaches in terms of\naccuracy. This is because BIGPAST can effectively reduce model misspecification\nerrors under the skewed Student's \\( t \\) assumption. We apply BIGPAST to a MEG\ndataset consisting of an individual with mild traumatic brain injury and an age\nand gender-matched control group, demonstrating its effectiveness in detecting\nabnormalities in the single-subject.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a Bayesian Inference General Procedures for A Single-Subject Test (BIGPAST), designed to mitigate the effects of skewness. BIGPAST operates under the null hypothesis that the single-subject follows the same distribution as the control group. We assess BIGPAST's performance against other methods through a series of simulation studies. The results demonstrate that BIGPAST is robust against deviations from normality and outperforms the existing approaches in terms of accuracy. This is because BIGPAST can effectively reduce model misspecification errors under the skewed Student's \( t \) assumption. We apply BIGPAST to a MEG dataset consisting of an individual with mild traumatic brain injury and an age and gender-matched control group, demonstrating its effectiveness in detecting abnormalities in the single-subject.
贝叶斯推理单受试者测试研究的一般程序
BIGPAST 是在单个被试与对照组遵循相同分布的零假设下运行的。我们通过一系列模拟研究评估了 BIGPAST 与其他方法的性能比较。结果表明,BIGPAST 对正态性偏差具有很强的鲁棒性,在准确性方面优于现有方法。这是因为 BIGPAST 可以有效减少倾斜 Student's \( t \) 假设下的模型误判。我们将BIGPAST应用于一个MEG数据集,该数据集由一个轻度脑外伤患者和一个年龄与性别匹配的对照组组成,证明了它在检测单个被试异常方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信