{"title":"Porous Hollow Carbon Alkali-Activated Nanoonions As a Conductive Additive for High-Rate Lithium Primary Batteries","authors":"Guilu Qin, Yifan Liu, JiaCheng He, Nengkun Wang, Junwei Wang, Xian Jian","doi":"10.1021/acsaem.4c01531","DOIUrl":null,"url":null,"abstract":"The high content of the covalent C–F bond of CF<sub><i>x</i></sub> materials makes the conductivity of the materials worse and the battery polarization serious, which greatly reduces power density and leads to heat generation. Therefore, adding a conductive agent is particularly important, as it improves the electron migration speed in the electrode, suppresses the polarization phenomenon, and promotes the effective use of active substances. In this paper, a carbon nanoonion (CNO) with a hollow porous structure is prepared by a room-temperature alkaline activation method as a conductive agent for the Li/CF<sub><i>x</i></sub> battery. The porous structures reduce the diffusion resistance of lithium ions, which is beneficial for Li/CF<sub><i>x</i></sub> batteries to achieve a better rate performance. The electrochemical results show that alkali-activated CNO as a part of the cathode material effectively improves the rate performance of the Li/CF<sub><i>x</i></sub> batteries. At the 2 C discharge rate, the specific capacity and energy density of CNO-NaOH-5M increased by 83.59% and 144.63%, respectively, compared with the commercial conductive additive SP. The power density and energy density of CNO-NaOH-3M samples at 8 C are 6907.36 and 863.42 Wh/kg, respectively, which was significantly better than the original CNO and SP. As a conductive agent, the increase of the oxygen-containing functional group of alkali-activated CNO improves the infiltrability of the cathode to the electrolyte, and the increase of pore-hollow structure improves the interface contact area, which is conducive to the transmission speed of electrons and lithium ions during discharge so that the Li/CF<sub><i>x</i></sub> battery has high rate performance.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsaem.4c01531","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The high content of the covalent C–F bond of CFx materials makes the conductivity of the materials worse and the battery polarization serious, which greatly reduces power density and leads to heat generation. Therefore, adding a conductive agent is particularly important, as it improves the electron migration speed in the electrode, suppresses the polarization phenomenon, and promotes the effective use of active substances. In this paper, a carbon nanoonion (CNO) with a hollow porous structure is prepared by a room-temperature alkaline activation method as a conductive agent for the Li/CFx battery. The porous structures reduce the diffusion resistance of lithium ions, which is beneficial for Li/CFx batteries to achieve a better rate performance. The electrochemical results show that alkali-activated CNO as a part of the cathode material effectively improves the rate performance of the Li/CFx batteries. At the 2 C discharge rate, the specific capacity and energy density of CNO-NaOH-5M increased by 83.59% and 144.63%, respectively, compared with the commercial conductive additive SP. The power density and energy density of CNO-NaOH-3M samples at 8 C are 6907.36 and 863.42 Wh/kg, respectively, which was significantly better than the original CNO and SP. As a conductive agent, the increase of the oxygen-containing functional group of alkali-activated CNO improves the infiltrability of the cathode to the electrolyte, and the increase of pore-hollow structure improves the interface contact area, which is conducive to the transmission speed of electrons and lithium ions during discharge so that the Li/CFx battery has high rate performance.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.