A Model-Free Method to Quantify Memory Utilization in Neural Point Processes

Gorana Mijatovic, Sebastiano Stramaglia, Luca Faes
{"title":"A Model-Free Method to Quantify Memory Utilization in Neural Point Processes","authors":"Gorana Mijatovic, Sebastiano Stramaglia, Luca Faes","doi":"arxiv-2408.15875","DOIUrl":null,"url":null,"abstract":"Quantifying the predictive capacity of a neural system, intended as the\ncapability to store information and actively use it for dynamic system\nevolution, is a key component of neural information processing. Information\nstorage (IS), the main measure quantifying the active utilization of memory in\na dynamic system, is only defined for discrete-time processes. While recent\ntheoretical work laid the foundations for the continuous-time analysis of the\npredictive capacity stored in a process, methods for the effective computation\nof the related measures are needed to favor widespread utilization on neural\ndata. This work introduces a method for the model-free estimation of the\nso-called memory utilization rate (MUR), the continuous-time counterpart of the\nIS, specifically designed to quantify the predictive capacity stored in neural\npoint processes. The method employs nearest-neighbor entropy estimation applied\nto the inter-spike intervals measured from point-process realizations to\nquantify the extent of memory used by a spike train. An empirical procedure\nbased on surrogate data is implemented to compensate the estimation bias and\ndetect statistically significant levels of memory. The method is validated in\nsimulated Poisson processes and in realistic models of coupled cortical\ndynamics and heartbeat dynamics. It is then applied to real spike trains\nreflecting central and autonomic nervous system activities: in spontaneously\ngrowing cortical neuron cultures, the MUR detected increasing memory\nutilization across maturation stages, associated to emergent bursting\nsynchronized activity; in the study of the neuro-autonomic modulation of human\nheartbeats, the MUR reflected the sympathetic activation occurring with\npostural but not with mental stress. The proposed approach offers a\ncomputationally reliable tool to analyze spike train data in computational\nneuroscience and physiology.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantifying the predictive capacity of a neural system, intended as the capability to store information and actively use it for dynamic system evolution, is a key component of neural information processing. Information storage (IS), the main measure quantifying the active utilization of memory in a dynamic system, is only defined for discrete-time processes. While recent theoretical work laid the foundations for the continuous-time analysis of the predictive capacity stored in a process, methods for the effective computation of the related measures are needed to favor widespread utilization on neural data. This work introduces a method for the model-free estimation of the so-called memory utilization rate (MUR), the continuous-time counterpart of the IS, specifically designed to quantify the predictive capacity stored in neural point processes. The method employs nearest-neighbor entropy estimation applied to the inter-spike intervals measured from point-process realizations to quantify the extent of memory used by a spike train. An empirical procedure based on surrogate data is implemented to compensate the estimation bias and detect statistically significant levels of memory. The method is validated in simulated Poisson processes and in realistic models of coupled cortical dynamics and heartbeat dynamics. It is then applied to real spike trains reflecting central and autonomic nervous system activities: in spontaneously growing cortical neuron cultures, the MUR detected increasing memory utilization across maturation stages, associated to emergent bursting synchronized activity; in the study of the neuro-autonomic modulation of human heartbeats, the MUR reflected the sympathetic activation occurring with postural but not with mental stress. The proposed approach offers a computationally reliable tool to analyze spike train data in computational neuroscience and physiology.
量化神经点过程内存利用率的无模型方法
量化神经系统的预测能力是神经信息处理的一个关键组成部分,预测能力是指神经系统存储信息并积极利用信息进行动态系统进化的能力。信息存储(IS)是量化动态系统内存主动利用率的主要指标,但它只适用于离散时间过程。虽然最近的理论工作为连续时间分析过程中存储的预测能力奠定了基础,但仍需要有效计算相关度量的方法,以促进神经数据的广泛利用。本研究介绍了一种无模型估算所谓内存利用率(MUR)的方法,即 IS 的连续时间对应值,专门用于量化神经点过程中存储的预测能力。该方法采用最近邻熵估算法,将其应用于从点进程实现中测量的尖峰间间隔,以量化尖峰序列所使用的记忆程度。基于代用数据的经验程序可补偿估计偏差,并检测出具有统计学意义的记忆水平。该方法在模拟泊松过程以及耦合皮层动力学和心跳动力学的现实模型中得到了验证。然后,将该方法应用于反映中枢神经系统和自主神经系统活动的真实尖峰列车:在自发生长的皮层神经元培养物中,MUR 检测到记忆利用率在各个成熟阶段都在增加,这与突发的同步活动有关;在人类心跳的神经-自主神经调节研究中,MUR 反映了交感神经在体力压力下的激活,而不是在精神压力下的激活。所提出的方法为在计算神经科学和生理学中分析尖峰列车数据提供了一种计算上可靠的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信