Bounding finite-image strings of length $ω^k$

Harry Altman
{"title":"Bounding finite-image strings of length $ω^k$","authors":"Harry Altman","doi":"arxiv-2409.03199","DOIUrl":null,"url":null,"abstract":"Given a well-quasi-order $X$ and an ordinal $\\alpha$, the set $s^F_\\alpha(X)$\nof transfinite strings on $X$ with length less than $\\alpha$ and with finite\nimage is also a well-quasi-order, as proven by Nash-Williams. Before\nNash-Williams proved it for general $\\alpha$, however, it was proven for\n$\\alpha<\\omega^\\omega$ by Erd\\H{o}s and Rado. In this paper, we revisit\nErd\\H{o}s and Rado's proof and improve upon it, using it to obtain upper bounds\non the maximum linearization of $s^F_{\\omega^k}(X)$ in terms of $k$ and $o(X)$,\nwhere $o(X)$ denotes the maximum linearization of $X$. We show that, for fixed\n$k$, $o(s^F_{\\omega^k}(X))$ is bounded above by a function which can roughly be\ndescribed as $(k+1)$-times exponential in $o(X)$. We also show that, for $k\\le\n2$, this bound is not far from tight.","PeriodicalId":501306,"journal":{"name":"arXiv - MATH - Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Given a well-quasi-order $X$ and an ordinal $\alpha$, the set $s^F_\alpha(X)$ of transfinite strings on $X$ with length less than $\alpha$ and with finite image is also a well-quasi-order, as proven by Nash-Williams. Before Nash-Williams proved it for general $\alpha$, however, it was proven for $\alpha<\omega^\omega$ by Erd\H{o}s and Rado. In this paper, we revisit Erd\H{o}s and Rado's proof and improve upon it, using it to obtain upper bounds on the maximum linearization of $s^F_{\omega^k}(X)$ in terms of $k$ and $o(X)$, where $o(X)$ denotes the maximum linearization of $X$. We show that, for fixed $k$, $o(s^F_{\omega^k}(X))$ is bounded above by a function which can roughly be described as $(k+1)$-times exponential in $o(X)$. We also show that, for $k\le 2$, this bound is not far from tight.
限定长度为 $ω^k$ 的有限图像字符串
给定一个良好基序$X$和一个序数$\alpha$,长度小于$\alpha$且具有有限映像的$X$上的无穷弦的集合$s^F_\alpha(X)$也是一个良好基序,这一点已被纳什-威廉姆斯证明。然而,在纳什-威廉斯证明了一般 $\alpha$ 时,厄德(Erd\H{o}s)和拉多(Rado)已经证明了$α<\omega^\omega$。在本文中,我们重温了埃尔德{Ho}斯和拉多的证明,并对其进行了改进,利用它得到了$s^F_{\omega^k}(X)$的最大线性化上限,即$k$和$o(X)$,其中$o(X)$表示$X$的最大线性化。我们证明,对于固定的 $k$,$o(s^F_{\omega^k}(X))$ 上界于一个函数,这个函数可以大致描述为 $o(X)$ 的 (k+1)$ 倍指数函数。我们还证明,对于 $k\le2$,这个界限并不严密。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信