Lucile FégerGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France, Carlos Escorihuela-SayaleroDepartament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, Barcelona, Spain, Jean-Michel RampnouxUniversité de Bordeaux, CNRS, LOMA, UMR 5798, Talence, France, Kyriaki KontouUniv Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, France, Micka BahGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France, Jorge Íñiguez-GonzálezMaterials Research and Technology Department, Luxembourg Institute of Science and TechnologyDepartment of Physics and Materials Science, University of Luxembourg, Belvaux, Luxembourg, Claudio CazorlaDepartament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, Barcelona, Spain, Isabelle Monot-LaffezGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France, Sarah DouriUniv Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, FranceLaboratoire National de Métrologie et d'Essais, Stéphane GraubyUniversité de Bordeaux, CNRS, LOMA, UMR 5798, Talence, France, Riccardo RuraliInstitut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Spain, Stefan DilhaireUniversité de Bordeaux, CNRS, LOMA, UMR 5798, Talence, France, Séverine GomèsUniv Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, France, Guillaume F. NatafGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France
{"title":"Lead-free room-temperature ferroelectric thermal conductivity switch using anisotropies in thermal conductivities","authors":"Lucile FégerGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France, Carlos Escorihuela-SayaleroDepartament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, Barcelona, Spain, Jean-Michel RampnouxUniversité de Bordeaux, CNRS, LOMA, UMR 5798, Talence, France, Kyriaki KontouUniv Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, France, Micka BahGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France, Jorge Íñiguez-GonzálezMaterials Research and Technology Department, Luxembourg Institute of Science and TechnologyDepartment of Physics and Materials Science, University of Luxembourg, Belvaux, Luxembourg, Claudio CazorlaDepartament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, Barcelona, Spain, Isabelle Monot-LaffezGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France, Sarah DouriUniv Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, FranceLaboratoire National de Métrologie et d'Essais, Stéphane GraubyUniversité de Bordeaux, CNRS, LOMA, UMR 5798, Talence, France, Riccardo RuraliInstitut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Spain, Stefan DilhaireUniversité de Bordeaux, CNRS, LOMA, UMR 5798, Talence, France, Séverine GomèsUniv Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, France, Guillaume F. NatafGREMAN UMR7347, CNRS, University of Tours, INSA Centre Val de Loire, Tours, France","doi":"arxiv-2409.05216","DOIUrl":null,"url":null,"abstract":"Materials with on-demand control of thermal conductivity are the\nprerequisites to build thermal conductivity switches, where the thermal\nconductivity can be turned ON and OFF. However, the ideal switch, while\nrequired to develop novel approaches to solid-state refrigeration, energy\nharvesting, and even phononic circuits, is still missing. It should consist of\nan active material only, be environment friendly, and operate near room\ntemperature with a reversible, fast, and large switching ratio. Here, we first\npredict by ab initio electronic structure calculations that ferroelectric\ndomains in barium titanate exhibit anisotropic thermal conductivities. We\nconfirm this prediction by combining frequency-domain thermoreflectance and\nscanning thermal microscopy measurements on a single crystal of barium\ntitanate. We then use this gained knowledge to propose a lead-free thermal\nconductivity switch without inactive material, operating reversibly with an\nelectric field. At room temperature, we find a switching ratio of 1.6 $\\pm$\n0.3, exceeding the performances of state-of-the-art materials suggested for\nthermal conductivity switches.","PeriodicalId":501234,"journal":{"name":"arXiv - PHYS - Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Materials with on-demand control of thermal conductivity are the
prerequisites to build thermal conductivity switches, where the thermal
conductivity can be turned ON and OFF. However, the ideal switch, while
required to develop novel approaches to solid-state refrigeration, energy
harvesting, and even phononic circuits, is still missing. It should consist of
an active material only, be environment friendly, and operate near room
temperature with a reversible, fast, and large switching ratio. Here, we first
predict by ab initio electronic structure calculations that ferroelectric
domains in barium titanate exhibit anisotropic thermal conductivities. We
confirm this prediction by combining frequency-domain thermoreflectance and
scanning thermal microscopy measurements on a single crystal of barium
titanate. We then use this gained knowledge to propose a lead-free thermal
conductivity switch without inactive material, operating reversibly with an
electric field. At room temperature, we find a switching ratio of 1.6 $\pm$
0.3, exceeding the performances of state-of-the-art materials suggested for
thermal conductivity switches.
按需控制热导率的材料是制造热导率开关的先决条件,在这种开关中,热导率可以打开或关闭。然而,要开发固态制冷、能量收集甚至声波电路的新方法,理想的开关仍未出现。它应该只由活性材料组成,对环境友好,在室温附近工作,具有可逆、快速和大开关比。在这里,我们首先通过ab initio 电子结构计算预测出钛酸钡中的铁电层具有各向异性的热导率。通过对钛酸钡单晶体进行频域热反射和扫描热显微镜测量,我们证实了这一预测。然后,我们利用所获得的知识提出了一种无铅热导开关,它不含非活性材料,在电场作用下可逆运行。在室温下,我们发现开关比为 1.6 美元/pm$0.3,超过了建议用于热导开关的最先进材料的性能。