Nested Fusion: A Method for Learning High Resolution Latent Structure of Multi-Scale Measurement Data on Mars

Austin P. Wright, Scott Davidoff, Duen Horng Chau
{"title":"Nested Fusion: A Method for Learning High Resolution Latent Structure of Multi-Scale Measurement Data on Mars","authors":"Austin P. Wright, Scott Davidoff, Duen Horng Chau","doi":"arxiv-2409.05874","DOIUrl":null,"url":null,"abstract":"The Mars Perseverance Rover represents a generational change in the scale of\nmeasurements that can be taken on Mars, however this increased resolution\nintroduces new challenges for techniques in exploratory data analysis. The\nmultiple different instruments on the rover each measures specific properties\nof interest to scientists, so analyzing how underlying phenomena affect\nmultiple different instruments together is important to understand the full\npicture. However each instrument has a unique resolution, making the mapping\nbetween overlapping layers of data non-trivial. In this work, we introduce\nNested Fusion, a method to combine arbitrarily layered datasets of different\nresolutions and produce a latent distribution at the highest possible\nresolution, encoding complex interrelationships between different measurements\nand scales. Our method is efficient for large datasets, can perform inference\neven on unseen data, and outperforms existing methods of dimensionality\nreduction and latent analysis on real-world Mars rover data. We have deployed\nour method Nested Fusion within a Mars science team at NASA Jet Propulsion\nLaboratory (JPL) and through multiple rounds of participatory design enabled\ngreatly enhanced exploratory analysis workflows for real scientists. To ensure\nthe reproducibility of our work we have open sourced our code on GitHub at\nhttps://github.com/pixlise/NestedFusion.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":"184 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Mars Perseverance Rover represents a generational change in the scale of measurements that can be taken on Mars, however this increased resolution introduces new challenges for techniques in exploratory data analysis. The multiple different instruments on the rover each measures specific properties of interest to scientists, so analyzing how underlying phenomena affect multiple different instruments together is important to understand the full picture. However each instrument has a unique resolution, making the mapping between overlapping layers of data non-trivial. In this work, we introduce Nested Fusion, a method to combine arbitrarily layered datasets of different resolutions and produce a latent distribution at the highest possible resolution, encoding complex interrelationships between different measurements and scales. Our method is efficient for large datasets, can perform inference even on unseen data, and outperforms existing methods of dimensionality reduction and latent analysis on real-world Mars rover data. We have deployed our method Nested Fusion within a Mars science team at NASA Jet Propulsion Laboratory (JPL) and through multiple rounds of participatory design enabled greatly enhanced exploratory analysis workflows for real scientists. To ensure the reproducibility of our work we have open sourced our code on GitHub at https://github.com/pixlise/NestedFusion.
嵌套融合:学习火星多尺度测量数据高分辨率潜在结构的方法
火星毅力号漫游车代表了火星测量规模的一代变革,然而分辨率的提高给探索性数据分析技术带来了新的挑战。火星车上的多个不同仪器分别测量科学家感兴趣的特定属性,因此分析潜在现象如何对多个不同仪器产生影响对于了解全貌非常重要。然而,每台仪器都有其独特的分辨率,这使得在重叠的数据层之间进行映射并非易事。在这项工作中,我们介绍了嵌套融合(Nested Fusion),这是一种将不同分辨率的任意分层数据集结合在一起的方法,可以产生最高分辨率的潜在分布,编码不同测量和尺度之间的复杂相互关系。我们的方法对大型数据集非常有效,甚至可以对未见过的数据进行推理,在实际火星探测器数据上的表现优于现有的降维和潜在分析方法。我们已经在美国宇航局喷气推进实验室(JPL)的一个火星科学团队中部署了嵌套融合方法,并通过多轮参与式设计为真正的科学家实现了大大增强的探索性分析工作流。为了确保我们工作的可重复性,我们在 GitHub 上开源了我们的代码:https://github.com/pixlise/NestedFusion。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信