niiv: Fast Self-supervised Neural Implicit Isotropic Volume Reconstruction

Jakob Troidl, Yiqing Liang, Johanna Beyer, Mojtaba Tavakoli, Johann Georg Danzl, Markus Hadwiger, Hanspeter Pfister, James Tompkin
{"title":"niiv: Fast Self-supervised Neural Implicit Isotropic Volume Reconstruction","authors":"Jakob Troidl, Yiqing Liang, Johanna Beyer, Mojtaba Tavakoli, Johann Georg Danzl, Markus Hadwiger, Hanspeter Pfister, James Tompkin","doi":"10.1101/2024.09.07.611785","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) microscopy data often is anisotropic with significantly lower resolution (up to 8x) along the z axis than along the xy axes. Computationally generating plausible isotropic resolution from anisotropic imaging data would benefit the visual analysis of large-scale volumes. This paper proposes niiv, a self-supervised method for isotropic reconstruction of 3D microscopy data that can quickly produce images at arbitrary (continuous) output resolutions. Within a neural field, the representation embeds a learned latent code that describes the implicit higher-resolution isotropic image region. Under isotropic volume assumptions, we self-supervise this representation on low-/high-resolution lateral image pairs to reconstruct an isotropic volume from low-resolution axial images. We evaluate our method on simulated and real anisotropic electron (EM) and light microscopy (LM) data. Compared to a state-of-the-art diffusion-based method, niiv shows improved reconstruction quality (+1dB PSNR) and is over three orders of magnitude faster (2,000x) to infer. Specifically, niiv reconstructs a 128^3 voxel volume in 1/10th of a second, renderable at varying (continuous) high resolutions for display.","PeriodicalId":501307,"journal":{"name":"bioRxiv - Bioinformatics","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.07.611785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional (3D) microscopy data often is anisotropic with significantly lower resolution (up to 8x) along the z axis than along the xy axes. Computationally generating plausible isotropic resolution from anisotropic imaging data would benefit the visual analysis of large-scale volumes. This paper proposes niiv, a self-supervised method for isotropic reconstruction of 3D microscopy data that can quickly produce images at arbitrary (continuous) output resolutions. Within a neural field, the representation embeds a learned latent code that describes the implicit higher-resolution isotropic image region. Under isotropic volume assumptions, we self-supervise this representation on low-/high-resolution lateral image pairs to reconstruct an isotropic volume from low-resolution axial images. We evaluate our method on simulated and real anisotropic electron (EM) and light microscopy (LM) data. Compared to a state-of-the-art diffusion-based method, niiv shows improved reconstruction quality (+1dB PSNR) and is over three orders of magnitude faster (2,000x) to infer. Specifically, niiv reconstructs a 128^3 voxel volume in 1/10th of a second, renderable at varying (continuous) high resolutions for display.
niiv:快速自监督神经内隐各向同性体重建
三维(3D)显微镜数据通常是各向异性的,沿 z 轴的分辨率(最高达 8 倍)明显低于沿 xy 轴的分辨率。通过计算从各向异性成像数据中生成可信的各向同性分辨率,将有利于大尺度体积的可视化分析。本文提出的 niiv 是一种用于三维显微镜数据各向同性重建的自监督方法,可快速生成任意(连续)输出分辨率的图像。在神经场中,该表示法嵌入了一个学习的潜码,用于描述隐含的更高分辨率各向同性图像区域。在各向同性体量假设下,我们对低/高分辨率侧向图像对进行自我监督,以从低分辨率轴向图像重建各向同性体量。我们在模拟和真实的各向异性电子(EM)和光学显微镜(LM)数据上评估了我们的方法。与最先进的基于扩散的方法相比,niiv 提高了重建质量(+1dB PSNR),推断速度快了三个数量级(2000 倍)。具体来说,niiv 能在 1/10 秒内重建 128^3 的体素体积,并能以不同(连续)的高分辨率渲染显示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信